Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)
\(\Leftrightarrow\frac{x+2015}{5}+\frac{5}{5}+\frac{x+2016}{4}+\frac{4}{4}=\frac{x+2017}{3}+\frac{3}{3}+\frac{x+2018}{2}+\frac{2}{2}\)
\(\Leftrightarrow\frac{x+2020}{5}+\frac{x+2020}{4}=\frac{x+2020}{3}+\frac{x+2002}{2}\)
\(\frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\)
\(\Leftrightarrow\left(x+2020\right).\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\)
\(\Leftrightarrow x+2020=0\)
\(\Leftrightarrow x=-2020\)
Vậy : \(x=-2020\)
Chúc bạn học tốt !!
a) \(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\\ \left(\frac{x+2015}{5}+1\right)+\left(\frac{x+2016}{4}+1\right)=\left(\frac{x+2017}{3}+1\right)+\left(\frac{x+2018}{2}+1\right)\\ \frac{x+2020}{5}+\frac{x+2020}{4}=\frac{x+2020}{3}+\frac{x+2020}{2}\\ \frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\\ \left(x+2020\right)\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\\ \Rightarrow x+2020=0\\ \Rightarrow x=-2020\)
Vậy x = -2020
b) \(\frac{x+2015}{5}+\frac{x+2016}{6}=\frac{x+2017}{7}+\frac{x+2018}{8}\\ \left(\frac{x+2015}{5}-1\right)+\left(\frac{x+2016}{6}-1\right)=\left(\frac{x+2017}{7}-1\right)+\left(\frac{x+2018}{8}-1\right)\\ \frac{x+2010}{5}+\frac{x+2010}{6}=\frac{x+2010}{7}+\frac{x+2010}{8}\\ \frac{x+2010}{5}+\frac{x+2010}{6}-\frac{x+2010}{7}-\frac{x+2010}{8}=0\\ \left(x+2010\right)\left(\frac{1}{5}+\frac{1}{6}-\frac{1}{7}-\frac{1}{8}\right)=0\\ \Rightarrow x+2010=0\\ \Rightarrow x=-2010\)
Vậy x = -2010
x+4/2015 + x+3/2016 = x+2/2017 + x+1/2018
=> 1 + x+4/2015 + 1 + x+3/2016 = 1 + x+2/2017 + 1 + x+1/2018
=> x+2019/2015 + x+2019/2016 = x+2019/2017 + x+2019/2018
=> x+2019/2015 + x+2019/2016 - x+2019/2017 - x+2019/2018 = 0
=> (x + 2019).(1/2015 + 1/2016 - 1/2017 - 1/2018) = 0
Vì 1/2015 > 1/2017; 1/2016 > 1/2018
=> 1/2015 + 1/2016 - 1/2017 - 1/2018 khác 0
=> x + 2019 = 0
=> x = -2019
\(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)
\(\Leftrightarrow\left(\frac{x+2015}{5}+1\right)+\left(\frac{x+2016}{4}+1\right)=\left(\frac{x+2017}{3}+1\right)+\left(\frac{x+2018}{2}+1\right)\)
\(\Leftrightarrow\frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\)
\(\Leftrightarrow x+2020=0\)vì \(\frac{1}{5}+\frac{1}{4}+\frac{1}{3}+\frac{1}{2}\ne0\)
\(\Leftrightarrow x=-2020\)
x/2015+x/2016+x/2017=0 =>x(1/2015+1/2016+1/2017+1/2018)=0 =>x=0
kick mk nha, chúc bn hok tốt!!
\(\frac{x+1}{2015}+\frac{x+1}{2016}=\frac{x+1}{2017}+\frac{x+1}{2018}\)
\(\Rightarrow\frac{x+1}{2015}+\frac{x+1}{2016}-\frac{x+1}{2017}-\frac{x+1}{2018}=0\)
\(\left(x+1\right)\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)
\(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\ne0\)
\(\Rightarrow x+1=0\)
\(x=-1\)
\(\Leftrightarrow\frac{x+1}{2015}+\frac{x+1}{2016}-\frac{x+1}{2017}-\frac{x+1}{2018}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)
\(\Leftrightarrow x+1=0\) ( vì \(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\ne0\))
\(\Leftrightarrow x=-1\)
a) \(a^2+b^2+c^2=ab+bc+ac\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(c-a\right)^2+\left(b-c\right)^2=0\)
Ta có : \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(c-a\right)^2\ge0\\\left(b-c\right)^2\ge0\end{cases}}\)
\(\Rightarrow\left(a-b\right)^2+\left(c-a\right)^2+\left(b-c\right)^2=0\)
\(\Leftrightarrow a=b=c\)
a. \(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ab-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\left(đpcm\right)\)
\(\frac{x+1}{2019}+\frac{x+2}{2018}=\frac{x+3}{2017}+\frac{x+4}{2016}\)
\(\Leftrightarrow\left(\frac{x+1}{2019}-1\right)+\left(\frac{x+2}{2018}-1\right)=\left(\frac{x+3}{2017}-1\right)+\left(\frac{x+4}{2016}-1\right)\)
\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}=\frac{x+2020}{2017}+\frac{x+2020}{2016}\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}\right)=0\)
\(\Leftrightarrow x+2020=0:\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}\right)\)
\(\Leftrightarrow x+2020=0\)
Còn lại tự làm :V
Lộn chỗ này , thay chút nha !
\(\Leftrightarrow\left(\frac{x+1}{2019}+1\right)+\left(\frac{x+2}{2018}+1\right)=\left(\frac{x+3}{2017}+1\right)+\left(\frac{x+4}{2016}+1\right)\)
Sorry =))
\(\frac{x-1}{2019}+\frac{x-2}{2018}-\frac{x-3}{2017}=\frac{x-4}{2016}\)
\(\Leftrightarrow\frac{x-1}{2019}+\frac{x-2}{2018}-\frac{x-3}{2017}-\frac{x-4}{2016}=0\)
\(\Leftrightarrow\frac{x-1}{2019}-1+\frac{x-2}{2018}-1-\frac{x-3}{2017}+1-\frac{x-4}{2016}+1=0\)
\(\Leftrightarrow\frac{x-2020}{2019}+\frac{x-2020}{2018}-\frac{x-2020}{2017}-\frac{x-2020}{2016}=0\)
\(\Leftrightarrow\left(x-2020\right)\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}\right)=0\)
\(\Leftrightarrow x-2020=0\Leftrightarrow x=2020\)
\(\frac{x-1}{2019}+\frac{x-2}{2018}-\frac{x-3}{2017}=\frac{x-4}{2016}\)
\(\frac{x-1}{2019}+\frac{x-2}{2018}=\frac{x-3}{2017}+\frac{x-4}{2016}\)
\(\frac{x-1}{2019}+\frac{x-2}{2018}-2=\frac{x-3}{2017}+\frac{x-4}{2016}-2\)
\(\left(\frac{x-1}{2019}-1\right)+\left(\frac{x-2}{2018}-1\right)=\left(\frac{x-3}{2017}-1\right)+\left(\frac{x-4}{2016}-1\right)\)
\(\frac{x-1-2019}{2019}+\frac{x-2-2018}{2018}=\frac{x-3-2017}{2017}+\frac{x-4-2016}{2016}\)
\(\frac{x-2020}{2019}+\frac{x-2020}{2018}=\frac{x-2020}{2017}+\frac{x-2020}{2016}\)
\(\frac{x-2020}{2019}+\frac{x-2020}{2018}-\frac{x-2020}{2017}-\frac{x-2020}{2016}=0\)
\(\left(x-2020\right)\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}\right)=0\)
\(\Rightarrow x-2020=0\)
Vậy \(x=2020\)
Có:\(\left(x+2020\right)\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\right)=0\)Mà \(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}>0\)
=>x+2020=0<=>x=-2020