Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: 2xx=3y=>x/3=y/2=>x/21=y/14 ; x/7=z/5=>x/21=z/15 =>x/21=y/14=z/15=>3x/63=7y/98=5z/75 ADTCDTSBN ta có 3x/63=7y/98=5z /75=3x-7y+5z=40/63-98+75=40=1 3x=1.63=63 =>x=21 ;7y=1.98=98=>y=14 ; 5z=1.75=>z=15
1 Ta có x -24 = y
Suy ra x - y = 24
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/7 = y/3 = x-y/7-3 =24/4=6
suy ra x= 42
y = 18
a) Ta có : \(\frac{x}{y}=\frac{6}{5}\) => \(\frac{x}{6}=\frac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{y}{5}=\frac{x+y}{6+5}=\frac{121}{11}=11\)
=> x = 11.6 = 66,y = 11.5 = 55
b) 4x = 5y => \(\frac{x}{5}=\frac{y}{4}\)=> \(\frac{2x}{10}=\frac{5y}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{10}=\frac{5y}{20}=\frac{2x-5y}{10-20}=\frac{40}{-10}=-4\)
=> x = (-4).5 = -20 , y = (-4).4 = -16
c) Đặt \(\frac{x}{3}=\frac{y}{16}=t\Rightarrow\hept{\begin{cases}x=3t\\y=16t\end{cases}}\)
=> xy = 3t.16t = 48t2
=> 48t2 = 192
=> t2 = 4
=> t = \(\pm\)2
Với t = 2 thì x = 3.2 = 6,y = 16.2 = 32
Với t = -2 thì x = -6,y = -32
d) \(\frac{x}{-3}=\frac{y}{7}\)
=> \(\frac{x^2}{9}=\frac{y^2}{49}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{9}=\frac{y^2}{49}=\frac{x^2-y^2}{9-49}=\frac{-360}{-40}=9\)
=> x2 = 9.9 = 81 => x = \(\pm\)9
y2 = 9.49 = 441 => y = \(\pm\)21
Câu e,f tương tự
Đặt k = \(\frac{x}{2}=\frac{y}{3}\)
Khi đó : k2 \(=\frac{xy}{2.3}=\frac{24}{6}=4\)
Suy ra : k = -2 ; 2
+ k = - 2 thì x = -4
y = -6
+ k = 2 thì x = 4
y = 6
Vậy ...........................................
<br class="Apple-interchange-newline"><div id="inner-editor"></div>x2 =y3
Khi đó : k2 =xy2.3 =246 =4
Suy ra : k = -2 ; 2
+ k = - 2 thì x = -4
y = -6
+ k = 2 thì x = 4
y = 6
Vậy ...........................................
đúng nha bn
a) Vì \(\frac{x}{7}=\frac{y}{3}=\frac{z}{4}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{7+3+4}=\frac{28}{14}=2\)
\(\Rightarrow\hept{\begin{cases}x=2.7=14\\y=3.3=9\\z=3.4=12\end{cases}}\)
Vậy ...
b) Vì \(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}\)
\(\Rightarrow\frac{3x}{6}=\frac{2y}{6}=\frac{2z}{12}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{3x}{6}=\frac{2y}{6}=\frac{2z}{12}=\frac{3x-2y-2z}{6-6-12}=\frac{24}{-12}=-2\)
\(\Rightarrow\hept{\begin{cases}x=-2.2=-4\\y=-2.3=-6\\z=-2.6=-12\end{cases}}\)
Vậy ...
a)\(\frac{x}{7}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{7+3+\text{4}}=\frac{24}{14}=\frac{12}{7}\)
=>\(\frac{x}{7}=\frac{12}{7}\)
x=12
=>\(\frac{y}{3}=\frac{12}{7}\)
y=\(\frac{36}{7}\)
=>\(\frac{z}{4}=\frac{12}{7}\)
z=48/7
vây x=12;y=36/7;z=48/7
a) \(\hept{\begin{cases}5x=7y\\x+2y=51\end{cases}\Rightarrow\frac{x}{7}=\frac{y}{5}=\frac{x+2y}{7+10}=\frac{51}{17}=3.}\)
Vậy \(\hept{\begin{cases}x=3.7=21\\y=3.5=15\end{cases}}\)
b)Ta có: \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\xy=24\end{cases}}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=k\)
\(\Rightarrow xy=2k+3k=24\)
\(\Rightarrow6.k^2=24\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k=2\)
\(\Rightarrow\hept{\begin{cases}x=2.2=4\\y=2.3=6\end{cases}}\)
c) Ta có: \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\\xyz=24\end{cases}}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)
\(\Rightarrow xyz=2k+3k+4k=24\)
\(\Rightarrow24.k^3=24\)
\(\Rightarrow k^3=1\)
\(\Rightarrow k=1\)
\(\Rightarrow\hept{\begin{cases}x=1.2=2\\y=1.3=3\\z=1.4=4\end{cases}}\)
nha bạn, cảm ơn và CHÚC BẠN HỌC TỐT!
5x=7y=> x/7=y/5
ADDTSBN =>x/7=y/5=(x+2y)/(7+2.5)=51/17=3
=> x/7=3=>x=21
y/5=3=> y=15
b) 4x = 3y \(\Rightarrow\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}\)
Và x2 + y2 = 100
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
Ta có:
\(\frac{x^2}{9}=4\Rightarrow x^2=4.9=36\Rightarrow x=6;x=-6\)
\(\frac{y^2}{16}=4\Rightarrow y^2=16.9=144\Rightarrow x=12;x=-12\)
Vậy ta có các cặp số x, y sau:
x = 6; y = 12
hoặc x = 6; y = -12
hoặc x = -6; y = 12
hoặc x = -6; y = -12
d) \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x^2}{2}=\frac{xy}{3}\)
Mà xy = 6
\(\Rightarrow\frac{x^2}{2}=\frac{xy}{3}=\frac{6}{3}=2\)
Ta có:
\(\frac{x^2}{2}=2\Rightarrow x^2=2.2=4\Rightarrow x=2;x=-2\)
Với x = 2, ta có:
\(\frac{2y}{3}=2\Rightarrow y=\frac{2.3}{2}=\frac{6}{2}=3\)
Với x = -2, ta có:
\(\frac{-2y}{3}=2\Rightarrow y=\frac{2.3}{-2}=\frac{-6}{2}=-3\)
Vậy có các cặp giá trị x, y sau:
x = 2; y = 3
Hoặc x = -2; y = -3
Đặt x/4=y/6=k.
=>x=4k, y=6k.
Mà x.y=24=>4k.6k=24.
=>24k^2=24.
=>K^2=24/24=1.
=>K=1 hặc -1.
Với K=1 =>x/4=4.
y/6=6.
Với K=-1 =>x/4=-4.
y/6=-6.
no trả lời