\(\frac{x+4}{2000}\)+\(\frac{x+3}{2001}\)=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2016

\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)

\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)

Có: \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\)

 \(\Rightarrow x+1=0\)

\(\Rightarrow x=-1\)

8 tháng 10 2017

Có \(\frac{x+4}{2000}\) + \(\frac{x+3}{2001}\) = \(\frac{x+2}{2002}\) + \(\frac{x+1}{2003}\)

 ( \(\frac{x+4}{2000}\) + 1 ) + ( \(\frac{x+3}{2001}\) + 1 ) = ( \(\frac{x+2}{2002}\) + 1 ) + ( \(\frac{x+1}{2003}\) + 1 )

\(\frac{x+4}{2000}\) + \(\frac{2000}{2000}\) ) + ( \(\frac{x+3}{2001}\) + \(\frac{2001}{2001}\) ) = ( \(\frac{x+2}{2002}\) + \(\frac{2002}{2002}\) ) + ( \(\frac{x+1}{2003}\) + \(\frac{2003}{2003}\) )

\(\frac{x+4+2000}{2000}\) + \(\frac{x+3+2001}{2001}\) = \(\frac{x+2+2002}{2002}\) + \(\frac{x+1+2003}{2003}\)

\(\frac{x+2004}{2000}\) + \(\frac{x+2004}{2001}\) = \(\frac{x+2004}{2002}\) + \(\frac{x+2004}{2003}\)

\(\frac{x+2004}{2000}\) + \(\frac{x+2004}{2001}\) - \(\frac{x+2004}{2002}\) - \(\frac{x+2004}{2003}\) = 0

( x + 2004 ) + ( \(\frac{1}{2000}\) + \(\frac{1}{2001}\) + \(\frac{1}{2002}\) + \(\frac{1}{2003}\) ) = 0

Mà \(\frac{1}{2000}\) + \(\frac{1}{2001}\) + \(\frac{1}{2002}\) + \(\frac{1}{2003}\) \(\ne\) 0

\(\Rightarrow\) x + 2004 = 0

 \(\Rightarrow\) x = -2004

Vậy x = - 2014

5 tháng 10 2018

Giải bài khó nhất =)

\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(\Leftrightarrow\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2003}+1\right)\)

\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)

\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\right)=0\)

Do \(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\ne0\) nên \(x+2004=0\Leftrightarrow x=-2004\)

28 tháng 8 2016

Ta có :

\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(\Rightarrow\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)

\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)

\(\Rightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

Mà \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)

\(\Rightarrow x+2004=0\)

\(\Rightarrow x=-2004\)

Vậy ...

=>x+4/2000+1+x+3/2001+1=x+2/2002+1+x+1/2003+1

=>x+2004/2000+x+2004/2001=x+2004/2002+x+2004/2003

=>(x+2004)(1/2000+1/2001-1/2002-1/2003)=0

=>x+2004=0

=>x=-2004

24 tháng 9 2019

undefined

( Câu trả lời bằng hình ảnh )

24 tháng 9 2019

Tham khảo:

Violympic toán 7

7 tháng 8 2016

\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(\Leftrightarrow\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2003}+1\right)\) (cộng cả 2 vế với 2)

\(\Leftrightarrow\)\(\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

\(\Leftrightarrow x+2004=0\)

\(\Leftrightarrow x=2004\)

7 tháng 8 2016

\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)

<=> \(\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)

<=> \(\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)

<=> x+2004=0

<=> x=-2004

\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2003}+1\right)\)

\(\left(\frac{x+4}{2000}+\frac{2000}{2000}\right)+\left(\frac{x+3}{2001}+\frac{2001}{2001}\right)=\left(\frac{x+2}{2002}+\frac{2002}{2002}\right)+\left(\frac{x+1}{2003}+\frac{2003}{2003}\right)\)

\(\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

\(\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)

\(x+2004\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

Ta thấy   \(\frac{1}{2000}>\frac{1}{2001}>\frac{1}{2002}>\frac{1}{2003}\)

nên  \(\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\right)\ne0\)

Do đó: x + 2004 = 0 => x = -2004

  Vậy x = -2004

12 tháng 10 2018

\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(\Rightarrow\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)

\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)

\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

Vì \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)

Nên x + 2004 = 0

=> x = -2004

Vậy x = -2004