Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{5}=\frac{2x+4y}{6+20}=\frac{28}{26}=\frac{14}{13}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=\frac{14}{13}\\\frac{y}{5}=\frac{14}{13}\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{42}{13}\\y=\frac{70}{13}\end{cases}}}\)
Vậy,.........
A = -5,13 : (25/28 - 8/9 . 1,25 + 16/63)
= -5,13 : (25/28 - 10/9 + 16/63)
= -5,13 : 1/28 = -3591/25 (-143,64)
B = (1 . 1,9 + 19,5 : 4/3) . (62/75 . 4/25)
= ( 1,9 + 117/8 ) . 248/1875
= 661/40 . 248/1875 = 2,185...
\(\frac{3}{a}=\frac{-4}{b}=\frac{7}{c}\Rightarrow\frac{a}{3}=\frac{b}{-4}=\frac{c}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{3}=\frac{b}{-4}=\frac{c}{7}=\frac{a-b+c}{3-\left(-4\right)+7}=\frac{28}{14}=2\)
=> a = 2.3 = 6
b = (-4).3 = -12
c = 7.2 = 14
Đặt
\(3x=4y=k\Rightarrow\frac{x}{4}=\frac{y}{3}=k\Rightarrow x=4k;y=3k.\)
Thay vào biểu thức ta có :
x2 + y2 = 25
=> ( 4k )2 + ( 3k )2 = 25
=> 16k2 + 9k2 = 25
=> k2 .( 16 + 9 ) = 25
=> k2 . 25 = 25
=> k2 = 1
=> k = 1
\(\Rightarrow\frac{x}{4}=1\Rightarrow x=4\)
\(\frac{y}{3}=1\Rightarrow y=3\)
Vậy x = 4 ; y = 3
các phần khác làm tương tự nha
Tìm x;y;z biết :
a) Giải
Từ \(3x=4y\Rightarrow\frac{x}{4}=\frac{y}{3}\)
Đặt \(\frac{x}{4}=\frac{y}{3}=k\)
\(\Rightarrow x=4k;y=3k\left(1\right)\)
Lại có : \(x^2+y^2=25\left(2\right)\)
Thay (1) vào (2) ta có :
\(\left(4k\right)^2+\left(3k\right)^2=25\)
\(\Rightarrow k^2.4^2+k^2.3^2=25\)
\(\Rightarrow k^2.16+k^2.9=25\)
\(\Rightarrow k^2.\left(16+9\right)=25\)
\(\Rightarrow k^2.25=25\)
\(\Rightarrow k^2=1^2\)
\(\Rightarrow k=\pm1\)
Nếu k = 1
=> x = 3.1 = 3 ;
y = 4.1 = 4
Vậy x = 3 ; y = 4
Theo tính chất dãy tỉ số bằng nhau
Ta có: \(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{2x}{6}=\frac{4y}{20}=\frac{2x+4y}{6+20}=\frac{28}{26}=\frac{14}{13}\)
=> x = 3 x 14/13 = 42/13
y = 5 x 14/13 = 70/13
Vậy .....
2x + 4y = 28
x + y = 14
ta có \(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{8}=\frac{14}{8}\)\(=\frac{7}{4}\)
=> \(x=\frac{21}{4},y=\frac{35}{4}\)
Có: \(\frac{x}{3}=\frac{y}{5}\)
=> \(\frac{2x}{6}=\frac{4y}{20}=\frac{2x+4y}{6+20}=\frac{28}{26}=\frac{14}{13}\)(Tính chất dãy tỉ số bằng nhau)
<=> \(\frac{x}{3}=\frac{y}{5}=\frac{14}{13}\)
=> x = 14 . 3 : 13 = \(\frac{42}{13}\)
=> y = 14 . 5 : 13 = \(\frac{70}{13}\)
\(\frac{x}{3}=\frac{y}{5}\) và \(2x+4y=28\)
Áp dụng tính chất của dảy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{2x+4y}{6+20}=\frac{28}{26}=\frac{14}{13}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{14}{13}.3\\y=\frac{14}{13}.5\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{42}{13}\\y=\frac{70}{13}\end{cases}}\)