Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{3}=\frac{y}{4}=\frac{2x}{6}=\frac{5y}{20}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2x}{6}=\frac{5y}{20}=\frac{2x+5y}{6+20}=\frac{10}{26}=\frac{5}{13}\)
=> \(\frac{2x}{6}=\frac{5}{13}=>x=\frac{15}{13}\)
=>\(\frac{5y}{20}=\frac{5}{13}=>y=\frac{20}{13}\)
Theo đề bài, ta có: \(\frac{x}{3}\)= \(\frac{y}{4}\)=\(\frac{2x+5y}{6+20}\)=\(\frac{10}{26}\)=\(\frac{5}{13}\)
=> x= \(\frac{5}{13}\). 3:2= \(\frac{15}{26}\)
y= \(\frac{5}{13}\).4:5= \(\frac{4}{13}\)
a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{-10}=\frac{y}{6}=\frac{z}{3}\) => \(\frac{2x}{-20}=\frac{3y}{18}=\frac{2z}{6}=\frac{2x+3y-2z}{-20+18-6}=\frac{16}{-8}=-2\)
=> \(\hept{\begin{cases}\frac{x}{-10}=-2\\\frac{y}{6}=-2\\\frac{z}{3}=-2\end{cases}}\) => \(\hept{\begin{cases}x=-2.\left(-10\right)=20\\y=-2.6=-12\\z=-2.3=-6\end{cases}}\)
Vậy ...
b) Ta có: -2x = 5y => x/5 = y/-2
Áp dụng t/c của dãy tỉ số bằng nhau , ta có:
\(\frac{x}{5}=\frac{y}{-2}=\frac{x+y}{5-2}=\frac{30}{3}=10\)
=> \(\hept{\begin{cases}\frac{x}{5}=10\\\frac{y}{-2}=10\end{cases}}\) => \(\hept{\begin{cases}x=10.5=50\\y=10.\left(-2\right)=-20\end{cases}}\)
Vậy ...
a. Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{-10}=\frac{y}{6}=\frac{z}{3}=\frac{2x+3y-2z}{-20+18-6}=\frac{16}{-8}=-2\)
=> x = -2.(-10) = 20
y = -2.6 = -12
z = -2.3 = -6
b. -2x = 5y => \(\frac{x}{5}=\frac{y}{-2}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{5}=\frac{y}{-2}=\frac{x+y}{5+\left(-2\right)}=\frac{30}{3}=10\)
=> x = 10.5 = 50
y = 10.(-2) = -20
c. Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{-3}=\frac{y}{-7}=\frac{2x+4y}{-6+\left(-28\right)}=\frac{68}{-34}=-2\)
=> x = -2.(-3) = 6
y = -2.(-7) = 14
d. Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{1}=\frac{y}{6}=\frac{z}{3}=\frac{2x+3y-4z}{2+18-12}=\frac{-24}{8}=-3\)
=> x = -3
y = -3.6 = -18
z = -3.3 = -9
a) Ta có : \(\frac{x}{y}=\frac{2}{3}\) => \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{2x}{4}=\frac{3y}{9}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{4}=\frac{3y}{9}=\frac{2x+3y}{4+9}=\frac{208}{13}=16\)
=> \(\hept{\begin{cases}\frac{x}{2}=16\\\frac{y}{3}=16\end{cases}}\) => \(\hept{\begin{cases}x=16.2=32\\y=16.3=48\end{cases}}\)
Vậy ...
b) \(\frac{3}{x}=\frac{4}{y}\) => \(\frac{x}{3}=\frac{y}{4}\)=> \(\frac{-3x}{-9}=\frac{5y}{20}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{-3x}{-9}=\frac{5y}{20}=\frac{-3x+5y}{-9+20}=\frac{33}{11}=3\)
=> \(\hept{\begin{cases}\frac{x}{3}=3\\\frac{y}{4}=3\end{cases}}\) => \(\hept{\begin{cases}x=3.3=9\\y=3.4=12\end{cases}}\)
Vậy ...
a) \(\text{Ta có : }\frac{x}{y}=\frac{2}{3}\Leftrightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{2x}{4}=\frac{3y}{9}\)
\(\text{Áp dụng tính chất dãy tỉ số bằng nhau ta có :}\frac{2x}{4}=\frac{3y}{9}=\frac{2x+3y}{4+9}=\frac{208}{13}=16\)
\(\Rightarrow\frac{2x}{4}=16\Rightarrow2x=64\Rightarrow x=32\)
\(\Rightarrow\frac{3y}{9}=16\Rightarrow3y=144\Rightarrow y=48\)
\(\text{Vậy }x=32;y=48\)
b) \(\text{Ta có : }\frac{3}{x}=\frac{4}{y}\Leftrightarrow\frac{y}{4}=\frac{x}{3}\Leftrightarrow\frac{5x}{20}=-\frac{3x}{-9}\)
\(\text{Áp dụng tính chất dãy tỉ số bằng nhau ta có : }\frac{5x}{20}=\frac{-3x}{-9}=\frac{5y+\left(-3x\right)}{20+\left(-9\right)}=\frac{33}{11}=3\)
\(\text{Nếu }\frac{-3x}{-9}=3\Rightarrow-3x=-27\Rightarrow x=9\)
\(\text{Nếu}\frac{5y}{20}=3\Rightarrow5y=60\Rightarrow y=12\)
\(\text{Vậy}x=9;y=12\)
c) \(\text{Ta có : }8x=5y\Rightarrow\frac{x}{5}=\frac{y}{8}\Leftrightarrow\frac{2x}{10}=\frac{y}{8}\)
\(\text{Áp dụng tính chất dãy tỉ số bằng nhau ta có :}\frac{2x}{10}=\frac{y}{8}=\frac{y-2x}{10-8}=\frac{-10}{2}=-5\)
\(\text{Nếu }\frac{2x}{10}=-5\Rightarrow2x=-50\Rightarrow x=-25\)
\(\text{Nếu }\frac{y}{8}=-5\Rightarrow y=-40\)
\(\text{Vậy}x=-25;y=-40\)
1)
a) Ta có: \(\frac{x}{y}=\frac{7}{13}\).
=> \(\frac{x}{7}=\frac{y}{13}\) và \(x+y=60.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{60}{20}=3.\)
\(\left\{{}\begin{matrix}\frac{x}{7}=3=>x=3.7=21\\\frac{y}{13}=3=>y=3.13=39\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(21;39\right).\)
c) Ta có: \(\frac{x}{y}=\frac{9}{10}.\)
=> \(\frac{x}{9}=\frac{y}{10}\) và \(y-x=120.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{9}=\frac{y}{10}=\frac{y-x}{10-9}=\frac{120}{1}=120.\)
\(\left\{{}\begin{matrix}\frac{x}{9}=120=>x=120.9=1080\\\frac{y}{10}=120=>y=120.10=1200\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(1080;1200\right).\)
d) Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}.\)
=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và \(x+y+z=81.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{81}{9}=9.\)
\(\left\{{}\begin{matrix}\frac{x}{2}=9=>x=9.2=18\\\frac{y}{3}=9=>y=9.3=27\\\frac{z}{4}=9=>z=9.4=36\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(18;27;36\right).\)
Mình chỉ làm 3 câu thôi nhé, dài quá bạn.
Chúc bạn học tốt!
a) Ta có: \(3x=5y\) tương đương với \(\frac{x}{5}=\frac{y}{3}\)
=> \(\frac{x}{5}=\frac{y}{3}\) với \(x-2y=10\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{5}=\frac{y}{3}=\frac{x-2y}{5-6}=\frac{10}{-1}=-10\)
=> \(x=-50\)
=> \(y=-30\)
a) Ta có : \(\frac{x-1}{2}=\frac{y+3}{4}\Leftrightarrow\left(x-1\right).4=\left(y+3\right).2\Leftrightarrow4x-4=2y+6\Leftrightarrow4x-2y=10\Leftrightarrow x=\frac{10+2y}{4}\left(1\right)\)
\(\frac{y+3}{4}=\frac{z-5}{6}\Leftrightarrow\left(y+3\right).6=\left(z-5\right).4\Leftrightarrow6y+18=4z-20\Leftrightarrow6y-4z=-38\Rightarrow z=\frac{6y+38}{4}\left(2\right)\)Thay (1) và (2) vào biểu thức \(5x-3y-4z=20\); ta được :
\(\frac{5.\left(10+2y\right)}{4}-3y-\frac{4.\left(6y+38\right)}{4}=20\)
\(\Leftrightarrow50+10y-12y-24y-152=80\)
\(\Leftrightarrow-26y=182\Rightarrow y=-7\)
Với \(y=-7\Rightarrow x=\frac{10+2.-7}{4}=-1;z=\frac{6.-7+38}{4}=-1\)
Vậy ....
a) Ta có : \(\frac{x}{y}=\frac{6}{5}\) => \(\frac{x}{6}=\frac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{y}{5}=\frac{x+y}{6+5}=\frac{121}{11}=11\)
=> x = 11.6 = 66,y = 11.5 = 55
b) 4x = 5y => \(\frac{x}{5}=\frac{y}{4}\)=> \(\frac{2x}{10}=\frac{5y}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{10}=\frac{5y}{20}=\frac{2x-5y}{10-20}=\frac{40}{-10}=-4\)
=> x = (-4).5 = -20 , y = (-4).4 = -16
c) Đặt \(\frac{x}{3}=\frac{y}{16}=t\Rightarrow\hept{\begin{cases}x=3t\\y=16t\end{cases}}\)
=> xy = 3t.16t = 48t2
=> 48t2 = 192
=> t2 = 4
=> t = \(\pm\)2
Với t = 2 thì x = 3.2 = 6,y = 16.2 = 32
Với t = -2 thì x = -6,y = -32
d) \(\frac{x}{-3}=\frac{y}{7}\)
=> \(\frac{x^2}{9}=\frac{y^2}{49}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{9}=\frac{y^2}{49}=\frac{x^2-y^2}{9-49}=\frac{-360}{-40}=9\)
=> x2 = 9.9 = 81 => x = \(\pm\)9
y2 = 9.49 = 441 => y = \(\pm\)21
Câu e,f tương tự
c) Theo bài ra: \(\frac{2x}{3}=\frac{y}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{5y}{25}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{3}{2}}=\frac{5y}{25}=\frac{x+5y}{\frac{3}{2}+25}=\frac{3}{\frac{53}{2}}=\frac{6}{53}\)
\(\Rightarrow x=\frac{9}{53};y=\frac{30}{53}\)
a) Ta có: \(\frac{x}{-5}=\frac{2y}{3}\Rightarrow\frac{x}{-5}=\frac{y}{\frac{3}{2}}\Rightarrow\frac{x}{-5}=\)\(\frac{5y}{\frac{15}{2}}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{-5}=\frac{5y}{\frac{15}{2}}=\frac{x+5y}{\left(-5\right)+\frac{15}{2}}=\)\(\frac{-1}{\frac{5}{2}}=\frac{-2}{5}\)
\(\Rightarrow x=2;y=-0,6\)
Ta có: \(\frac{x}{3}=\frac{y}{4}\left(1\right)\)Áp dụng tính chất cơ bản của phân số ta có:
\(\frac{x}{3}=\frac{7}{4}\Leftrightarrow\frac{2x}{6}=\frac{5y}{20}\)Theo tính chất tỉ dãy số bằng nhau ta có:
\(\frac{2x}{6}=\frac{5y}{20}=\frac{2x+5y}{6+20}=\frac{5}{13}\left(2\right)\)Thế ( 2 ) vào ( 1 ), suy ra:
\(\hept{\begin{cases}x=\frac{5}{13}.3\\y=\frac{5}{13}.4\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{15}{13}\\y=\frac{20}{13}\end{cases}}}\)
Biết x/3 = y/4 và 2x + 5y = 10. Tìm giá trị của x, y (Áp dụng tính chất của dãy số bằng nhau)
Ta có: x/3 = y/4
=> 2x/6 = 5y/20
Mà 2x + 5y = 10
Áp dụng tính chất của dãy số bằng nhau, ta có:
2x/6 = 5y/20 = (2x + 5y)/(6 + 20) = 10/26 = 5/13
=> 2x/6 = 5/13 => 5y/20 = 5/13
=> x = 15/13 => y = 20/13
Vậy x = 15/13; y = 20/13