\(\frac{x}{3}=\frac{y}{4};\frac{z}{5}=\frac{y}{7}\) và 2x + 3y - z = 186 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2016

Ta có: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{21}=\frac{y}{28}\)

\(\frac{z}{5}=\frac{y}{7}\Rightarrow\frac{z}{20}=\frac{y}{28}\)

\(\Rightarrow\frac{x}{21}=\frac{y}{28}=\frac{z}{20}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\frac{x}{21}=\frac{y}{28}=\frac{z}{20}=\frac{2x+3y-z}{42+84-20}=\frac{186}{106}=\frac{93}{53}\)

=> \(\begin{cases}x=\frac{1953}{53}\\y=\frac{2604}{53}\\z=\frac{1860}{53}\end{cases}\)

2 tháng 10 2016

@Nguyễn Đình Dũng 

16 tháng 7 2018

a) Ta có: x/10=y/6=z/24 và 5x+y—2x=28

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

x/10=y/6=z/24=5x/50+y/6–2x/48= 5x+y—2x/50+6–48=28/ 8

Ta được: x= 10.28/8=35

y= 6.28/8=21

z=24.28/8=84

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

1 tháng 10 2016

a/ \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) ; Suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\) hay \(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)

Suy ra : x = 2.6 = 12

y = 2.4 = 8

z = 2.5 = 10

b,c,d tương tự

e/ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) ; \(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)

Tới đây bạn làm tương tự a,b,c,d

f tương tự.

g/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)

Bạn áp dụng dãy tỉ số bằng nhau là ra.

h/ Áp dụng dãy tỉ số bằng nhau : 

\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)

Từ đó lại suy ra \(\begin{cases}12x=15y\\20z=12x\\15y=20z\end{cases}\)

Rút ra tỉ số và áp dụng dãy tỉ số bằng nhau.

 

 

1 tháng 10 2016

/vip/tranthimyduyen

28 tháng 10 2019

Ta có

\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{3y}{60}=\frac{2x}{30}\)

Ap dụng tính chất DTSBN ta có

\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y+z}{30+60+28}=\frac{186}{118}=\frac{93}{59}\)

\(\hept{\begin{cases}\frac{x}{15}=\frac{93}{59}\\\frac{y}{20}=\frac{93}{59}\\\frac{z}{28}=\frac{93}{59}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1395}{59}\\y=\frac{1860}{59}\\z=\frac{2604}{59}\end{cases}}\)

Ta có : \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3}.\frac{1}{5}=\frac{y}{4}.\frac{1}{5}\Rightarrow\frac{x}{15}=\frac{y}{20}\)

            \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}.\frac{1}{4}=\frac{z}{7}.\frac{1}{4}\Rightarrow\frac{y}{20}=\frac{z}{28}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Theo tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y+z}{2.15+3.20+28}=\frac{186}{118}=\frac{93}{59}\)

\(\Rightarrow\frac{x}{15}=\frac{93}{59}\Rightarrow x=\frac{93}{59}.15=\frac{1395}{59}\)

      \(\frac{y}{20}=\frac{93}{59}\Rightarrow y=\frac{93}{59}.20=\frac{1860}{59}\)

       \(\frac{z}{28}=\frac{93}{59}\Rightarrow z=\frac{93}{59}.28=\frac{2604}{59}\)

Vậy : \(\left(x;y;z\right)=\left(\frac{1395}{59};\frac{1860}{59};\frac{2604}{59}\right)\)

3 tháng 1 2018

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)

=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{50-5}{9}=\frac{45}{9}\)= 5

=> x-1/2 = 5 => x-1=5 => x=6

y-2/3 = 5 => y-2 = 15 => y =17

z-3/4=5 => z-3=20 => z=23

3 tháng 1 2018

Đặt x/2=y/3=z/5=k => x=2k,y=3k,z=5k

Ta có: xyz=2k.3k.5k=30k3 = 810 => k3 = 27 => k=3

=> x=2.3=6

y=3.3=9

z=5.3=15

18 tháng 6 2019

#)Giải :

a) Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)

\(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}\Rightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}}\)

Vậy x = 45; y = 60; z = 84

b) Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)

\(\left(+\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-z\)

Thay (1) vào (+) ta được :

\(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)

\(\left(+_2\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\)

Thay (2) và (+2) ta được :

\(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)

\(\left(+_3\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)

Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)

18 tháng 6 2019

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow xyz=2k\cdot3k\cdot5k=30k^3\)

Mà \(xyz=810\Rightarrow30k^3=810\)

\(\Rightarrow k^3=27\)

\(\Rightarrow k=3\)

Thay vào tìm x,,z.

12 tháng 8 2016

a) Từ \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3}.\frac{1}{5}=\frac{y}{4}.\frac{1}{5}\Rightarrow\frac{x}{15}=\frac{y}{20}\)

Từ \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}.\frac{1}{4}=\frac{z}{7}.\frac{1}{4}\Rightarrow\frac{y}{20}=\frac{z}{28}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)

Áp dụng t/c dãy tỉ số bằng nhau : \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)

Suy ra : \(\begin{cases}\frac{2x}{30}=3\\\frac{3y}{60}=3\\\frac{z}{28}=3\end{cases}\) \(\Rightarrow\begin{cases}x=45\\y=60\\z=84\end{cases}\)

b) Ta có : \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2\left(x-1\right)}{2.2}=\frac{3\left(y-2\right)}{3.3}=\frac{z-3}{4}\)

\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

Áp dụng t/c dãy tỉ số bằng nhau : 

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}\)

\(=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{45}{9}=5\)

Suy ra : \(\begin{cases}\frac{x-1}{2}=5\\\frac{y-2}{3}=5\\\frac{z-3}{4}=5\end{cases}\) \(\Rightarrow\begin{cases}x=11\\y=17\\z=23\end{cases}\)

12 tháng 8 2016

a ) \(\frac{x}{3}=\frac{y}{5};\frac{y}{5}=\frac{z}{7}\)

Quy đồng : \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

   \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{2.15+3.20-28}=\frac{186}{62}=3\)

\(\Rightarrow\frac{x}{15}=3\Rightarrow x=45\)

\(\Rightarrow\frac{y}{20}=3\Rightarrow y=60\)

\(\Rightarrow\frac{z}{28}=3\Rightarrow z=84\)

Vậy x = 45 , y = 60 , z = 84

 

6 tháng 11 2019

b. Câu hỏi của Nguyen Hai Bang - Toán lớp 7 - Học toán với OnlineMath

23 tháng 2 2016

ta có:\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)

  \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{z}{28}=\frac{y}{20}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{2.15+3.20-28}=\frac{186}{30+60-28}=\frac{186}{62}=3\)

ta có: x=3.15=45

         y=3.20=60

         z=3.28=84

ta có: x+y+z=45+60+84=189

vậy x+y+z=189

9 tháng 10 2015

a) Ta có : x/2=y/3; y/5=z/4 => 

             = x/10=y/15 ; y/15= z/12

           => x/10= y/15=z/12

Ap dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/10=y/15=z/12 = x-y+z / 10-15+12 = (-49)/7 = (-7)

+) Vì x/10 =(-7) => x=(-70)

+) Vì y/15 =(-7) => y=(-105)

+) Vì z/12 =(-7) => z=(-84)

NHẤN ĐÚNG NHA BẠN !

 

b)

Ta có: x/3=y/4 ; y/4=z/7 => x/3 = y/4=z/7

Ta có: x/3=y/4=z/7 = 2.x/2.3 =3.y/3.4 = z/7

                            = 2.x/6 = 3.y/12 = z/7

Ap dụng tính chất của dãy tỉ số bằng nhau, ta có:

2.x/6 = 3.y/12 = z/7 = 2.x+3.y-z/ 6+12-7

                              =186/11

Từ đó tính được x,y,z nha

NHẤN ĐÚNG NHA BẠN 

30 tháng 9 2017

bay gio o so thu nguoi ta cho hut thuoc roi