\(\frac{^{^{x^{30}+x^{28}+x^{26}+.......+x^6+x^4+x^2+1}}}{x^{28}+x^{24}+x^{20}+......+x^8+x^4+1}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2018
https://i.imgur.com/8KxAu00.jpg
17 tháng 12 2018

thanks.bạn giải xong nhìn lại dễ quá

4 tháng 3 2020

\(\frac{x^{30}+x^{28}+x^{26}+x^{24}+...+x^4+x^2+1}{x^{28}+x^{24}+x^{20}+...+x^8+x^4+1}=\frac{\left(x^{30}+x^{26}+x^{22}+...+x^2\right)+\left(x^{28}+x^{24}+...+x^4+1\right)}{x^{28}+x^{24}+x^{20}+...+x^4+1}\)

\(=\frac{x^2\left(x^{28}+x^{24}+...+x^4+1\right)+\left(x^{28}+x^{24}+...+x^4+1\right)}{x^{28}+x^{24}+...+x^4+1}\)

\(=\frac{\left(x^2+1\right)\left(x^{28}+x^{24}+...+x^4+1\right)}{x^{28}+x^{24}+...+x^4+1}\)

\(=x^2+1\)

19 tháng 12 2018

Hỏi đáp Toán

23 tháng 2 2017

bài 1+2: phân tích mẫu thành nhân tử r` áp dụng 

1/ab=1/a-1/b 

bài 3+4: quy đồng rút gọn blah...

a: \(=\dfrac{2^{19}\cdot3^9+2^{20}\cdot3^{10}}{2^{19}\cdot3^9+2^{18}\cdot3^9\cdot5}=\dfrac{2^{19}\cdot3^9\left(1+2\cdot3\right)}{2^{18}\cdot3^9\left(2+5\right)}=2\)

 

18 tháng 8 2020

ok

18 tháng 8 2020

\(\frac{x-30}{10}+\frac{x-28}{9}+\frac{x-26}{8}=-6\)

<=> \(\frac{36.\left(x-30\right)}{360}+\frac{40\left(x-28\right)}{360}+\frac{45\left(x-26\right)}{360}=\frac{-2160}{360}\)

=> \(36x-1080+40x-1120+45x-1170=-2160\)

\(< =>36x+40x+45x=-2160+1080+1120+1170\)

<=> \(121x=1210\)

<=> x = 10

30 tháng 12 2018

\(\frac{x^{24}+x^{20}+...+x^4+1}{x^{26}+x^{24}+...+x^2+1}=\frac{x^{24}+x^{20}+...+x^4+1}{\left(x^{24}+x^{20}+...+x^4+1\right)+\left(x^{26}+x^{22}+...+x^2\right)}\)

\(=1-\frac{x^2\left(x^{24}+x^{20}+...+x^4+x^1\right)}{\left(1+x^2\right)\left(x^{24}+2^{20}+...+x^4+1\right)}=1-\frac{x^2}{1+x^2}\)

\(=\frac{1+x^2-x^2}{1+x^2}=\frac{1}{1+x^2}\)

30 tháng 12 2018

Hoặc cách khác:

\(\frac{x^{24}+x^{20}+...+x^4+1}{x^{26}+x^{24}+...+x^2+1}=\frac{x^{24}+x^{20}+...+x^4+1}{\left(x^{24}+x^{20}+...+x^4+1\right)+x^2\left(x^4+x^{20}+...+x^4+1\right)}\)

\(=\frac{x^{24}+x^{20}+...+x^4+1}{\left(x^2+1\right)\left(x^{24}+x^{20}+...+x^4+1\right)}=\frac{1}{x^2+1}\)

3) \(\frac{x-2}{x-5}\) \(-\frac{5}{x^2-5x}=\frac{1}{x}\) \(\Leftrightarrow\) \(\frac{x-2}{x-5}-\frac{5}{x.\left(x-5\right)}=\frac{1}{x}\) \(\Leftrightarrow\frac{\left(x-2\right).\left(x+5\right)}{x.\left(x-5\right)}-\frac{5}{x.\left(x-5\right)}=\frac{1.\left(x+5\right)}{x.\left(x-5\right)}\) \(\Leftrightarrow x^2+5x-2x-10-5=1x+5\) \(\Leftrightarrow x^2+5x-2x-1x-10-5-5\) = 0 \(\Leftrightarrow\) \(x^2+2x-20=0\) \(\Leftrightarrow x^2+2x-10x-20=0\) \(\Leftrightarrow\) (x\(^2\) + 2x) - (10x +...
Đọc tiếp

3) \(\frac{x-2}{x-5}\) \(-\frac{5}{x^2-5x}=\frac{1}{x}\)

\(\Leftrightarrow\) \(\frac{x-2}{x-5}-\frac{5}{x.\left(x-5\right)}=\frac{1}{x}\)

\(\Leftrightarrow\frac{\left(x-2\right).\left(x+5\right)}{x.\left(x-5\right)}-\frac{5}{x.\left(x-5\right)}=\frac{1.\left(x+5\right)}{x.\left(x-5\right)}\)

\(\Leftrightarrow x^2+5x-2x-10-5=1x+5\)

\(\Leftrightarrow x^2+5x-2x-1x-10-5-5\) = 0

\(\Leftrightarrow\) \(x^2+2x-20=0\)

\(\Leftrightarrow x^2+2x-10x-20=0\)

\(\Leftrightarrow\) (x\(^2\) + 2x) - (10x + 20) = 0

\(\Leftrightarrow\) x.(x + 2) - 10.(x + 2) = 0

\(\Leftrightarrow\)

4) \(\frac{x-4}{x+7}-\frac{1}{x}=\frac{-7}{x^2+7x}\)

\(\Leftrightarrow\frac{x-4}{x+7}-\frac{1}{x}=\frac{-7}{x\left(x+7\right)}\)

\(\Leftrightarrow\frac{\left(x-4\right).\left(x+7\right)}{x.\left(x+7\right)}-\frac{1.\left(x+7\right)}{x.\left(x+7\right)}=\frac{-7}{x.\left(x+7\right)}\)

\(\Leftrightarrow\) \(x^2+7x-4x-28-x-7=-7\)

\(\Leftrightarrow x^2+7x-4x-x-28-7+7=0\)

\(\Leftrightarrow\) x\(^2\) + 2x - 28 = 0

\(\Leftrightarrow\) x\(^2\) + 2x - 14x - 28 = 0

\(\Leftrightarrow\) (x\(^2\) + 2x) - (14x + 28) = 0

\(\Leftrightarrow\) x.(x + 2) - 14.(x + 2) = 0

\(\Leftrightarrow\) (x - 14) = 0 hoặc (x + 2) = 0

\(\Leftrightarrow\) x = 4 (Nhận) hoặc x = -2 (Loại)

5) \(\frac{x+2}{x-2}+\frac{x-2}{x+2}=\frac{8x}{x^2-4}\)

\(\Leftrightarrow\) \(\frac{\left(x+2\right).\left(x+2\right)}{\left(x-2\right).\left(x+2\right)}+\frac{\left(x-2\right).\left(x-2\right)}{\left(x+2\right).\left(x-2\right)}=\frac{8x}{\left(x-2\right).\left(x+2\right)}\)

\(\Leftrightarrow x^2+2x+2x+4+x^2-2x-2x+4=8x\)

\(\Leftrightarrow\) \(x^2+x^2+2x+2x-2x-2x-8x+4+4=0\)

\(\Leftrightarrow2x^2-8x+8=0\)

\(\Leftrightarrow\) 2x\(^2\) - 2x - 8x + 8 = 0

\(\Leftrightarrow\) 2x(x - 1) - 8(x - 1) = 0

\(\Leftrightarrow\) 2x - 8 = 0 hoặc x - 1 = 0

\(\Leftrightarrow\) 2x = 8 hoặc x = 1

\(\Leftrightarrow\) x = 4 (Nhận) hoặc x = 1 (Nhận)

Vậy S = {4; 1}

6) \(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{4}{x^2-1}\)

\(\Leftrightarrow\) \(\frac{\left(x+1\right).\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}-\frac{\left(x-1\right).\left(x-1\right)}{\left(x+1\right).\left(x-1\right)}=\frac{4}{\left(x-1\right).\left(x+1\right)}\)

\(\Leftrightarrow\) x\(^2\) + x + x + 1 - x\(^2\) + x + x - 1 = 4

\(\Leftrightarrow\) 4x - 4 = 0

\(\Leftrightarrow\) 4 (x - 1) =0

\(\Leftrightarrow\) x - 1 = 0 / 4 = 0

\(\Leftrightarrow\) x = 1 (Nhận)

Vậy S = {1}

7) \(\frac{x+1}{x-1}+\frac{-4x}{x^2-1}=\frac{x-1}{x+1}\)

\(\Leftrightarrow\) \(\frac{\left(x+1\right).\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}+\frac{-4x}{\left(x-1\right).\left(x+1\right)}=\frac{\left(x-1\right).\left(x-1\right)}{\left(x+1\right).\left(x+1\right)}\)

\(\Leftrightarrow x^2+x+x+1-4x=x^2-x-x+1\)

\(\Leftrightarrow\) 0

Vậy S ={\(\varnothing\)}

0
26 tháng 7 2015

Xét \(x\ne1\)

Đặt \(y=x^4\).\(M=x^{28}+x^{24}+...+x^4+1\)

\(M=y^7+y^6+...+y^2+y+1\)\(\Rightarrow Ay=y^8+y^7+...+y^2+y\)

\(\Rightarrow M\left(y-1\right)=y^8-1\Rightarrow M=\frac{y^8-1}{y-1}=\frac{x^{32}-1}{x^4-1}\)

Tương tự \(N=x^{30}+x^{28}+...+x^2+1=\frac{\left(x^2\right)^{16}-1}{x-1}=\frac{x^{32}-1}{x-1}\)

\(A=\frac{M}{N}=\frac{\frac{x^{32}-1}{x^4-1}}{\frac{x^{32}-1}{x^2-1}}=\frac{x^2-1}{x^4-1}=\frac{1}{x^2+1}\)

Thay số vô tính ra A.