Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biến đổi VT
x^3 + y^3 + z^3 - 3xyz = ( x+ y)^3 - 3xy ( x+ y) + z^3 - 3xyz
= ( x+ y + z)^3 - 3(x+y)z(x+y+z) - 3xy ( x + y +z )
= ( x+ y+ z) [ ( x + y+ z)^2 - 3(x+y)z - 3xy)
= ( x+ y +z ) . ( x^2 + y^2 + z^2 + 2xy + 2yz + 2xz - 3xy - 3yz - 3 xz )
= ( x+ y +z )(x^2 + y^2 + z^2 - xy -yz - xz )
= 1/2 ( x+ y +z) ( 2x^2 + 2y^2 + 2z^2 - 2xy - 2yz - 2 xz)
Đưa cái ngoạc cuối về dạng bình phương là xong
Câu này khá dễ .Có thể biến đổi \(x^3+y^3+z^3\) thành hằng đẳng thức rồi trừ gọn đi rồi đặt nhân tử chung để biến đổi như vế phải