\(\frac{x^2}{x^2-5x+7}\) tim gtnn va gtln

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2017

\(S=\sqrt{x-1}+\sqrt{2x^2-5x+7}\)

\(\Rightarrow S^2=2x^2-4x+6+2\sqrt{x-1.2x^2-5x+7}\)

\(=2.x-1^2+4+2\sqrt{x-1.2x^2+5x-7}\ge4\)

\(Min_A=4\Leftrightarrow x=1\)

Vậy: \(x=1\)

P/s: Đúng ko nhỉ?

5 tháng 10 2017

bạn ơ\(\sqrt{x-1}+\sqrt{2x^2-5x+7}\)i  sao ra cai do vay

3 tháng 11 2016

Ta có 

\(A\left(x^2-5x+7\right)=x^2\)

\(\Leftrightarrow x^2\left(A-1\right)-5Ax+7A=0\)

Để pt này có nghiệm thì \(\Delta\ge0\)

\(\Leftrightarrow25A^2-4.7.\left(A-1\right)\ge0\)

\(\Leftrightarrow3A^2-28A\le0\)

\(\Leftrightarrow0\le A\le\frac{28}{3}\)

Vậy A đạt GTNN là 0 khi x = 0, đạt GTLN là \(\frac{28}{3}\)khi x = \(\frac{14}{5}\)

24 tháng 3 2020

Miền giá trị nhé :D

\(y=\frac{x^2}{x^2-5x+7}\)

\(\Leftrightarrow yx^2-5xy+7y=x^2\)

\(\Leftrightarrow\left(y-1\right)x^2-5xy+7y=0\)

\(TH1:y-1=0\Rightarrow y=1\Rightarrow x=\frac{7}{5}\)

\(TH2:y-1\ne0\Rightarrow pt\) là phương trình bậc 2 ẩn x

\(\Delta_x=y^2-28\left(y-1\right)=y^2-28y+28\ge0\)

\(\Leftrightarrow\left(y-14\right)^2-168\ge0\Rightarrow\left(y-14\right)^2\ge168\)

\(\Rightarrow-\sqrt{168}\le\left|y-14\right|\le\sqrt{168}\)

Không biết có sai bước nào ko chứ số xấu -_-

5 tháng 10 2017

\(C=\frac{x^2}{x^2-5x+7}\)

\(\Leftrightarrow Cx^2-5Cx+7C-x^2=0\)

\(\Leftrightarrow\left(C-1\right)x^2-5Cx+7C=0\)(1)

Để \(pt\left(1\right)\) có nghiệm \(\Leftrightarrow\Delta=\left(-5C\right)^2-4\left(C-1\right)7C\ge0\)

\(\Leftrightarrow25C^2-28C^2+28C\ge0\Leftrightarrow-3C^2+28C\ge0\Leftrightarrow0\le C\le\frac{28}{3}\)

Đạt GTNN là 0 khi x = 0

Đạt GTLN là \(\frac{28}{3}\) khi \(x=\frac{14}{5}\)

6 tháng 10 2017

Mik có cách khác dễ hiểu hơn đó :v

Nhưng cám ơn bạn nhiều :))

NV
9 tháng 4 2019

GTLN và GTNN của biểu thức này đều ko tồn tại

D sẽ có giá trị lớn tới dương vô cùng khi \(x\) càng gần \(-1\) về bên trái (ví dụ, các giá trị như \(x=-1,00001\) chẳng hạn)

D có giá trị nhỏ tới âm vô cùng khi \(x\) càng gần \(-1\) về bên phải (ví duhj, các giá trị như \(x=-0,99999\))

31 tháng 12 2015

bạn cứ xét mẫu là được

mẫu của chúng luôn luôn > hoặc = 0

chỉ cần xét tử thôi nha bạn

31 tháng 12 2015

a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)

b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)

3 tháng 11 2017

GTLN của A là 2/3

GTNN của A là số ko tìm đc hay nói là lớn hơn -1

\(x^2\)luôn cho ra kết là lớn hơn 0. Mà \(x+1< x^2\)Cứ thế cho ra số lớn hơn -1. Đơn giản vì \(x+1< x^2+x+1\)

25 tháng 11 2017

+) GTNN

Ta có :\(3A=\frac{3x+3}{x^2+x+1}=\frac{-x^2-x-1+x^2+4x+4}{x^2+x+1}=\frac{-\left(x^2+x+1\right)+\left(x+2\right)^2}{x^2+x+1}\)

\(=-1+\frac{\left(x+1\right)^2}{x^2+x+1}\ge-1\) \(\Rightarrow A\ge-\frac{1}{3}\)Đạt GTNN là \(-\frac{1}{3}\)

Đạt được khi \(\frac{\left(x+1\right)^2}{x^2+x+1}=0\Rightarrow x=-1\)

+) GTLN : 

\(A=\frac{x+1}{x^2+x+1}=\frac{x^2+x+1-x^2}{x^2+x+1}=1-\frac{x^2}{x^2+x+1}\le1\)Đạt GTLN là 1

Đạt được khi \(\frac{x^2}{x^2+x+1}=0\Rightarrow x=0\)