\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2017

\(\frac{1}{a+b-x}=\frac{1}{a}+\frac{1}{b}-\frac{1}{x}\) (ĐKXĐ: x \(\ne\) 0 và x \(\ne\) a + b)

<=> \(\frac{1}{a+b-x}+\frac{1}{x}-\frac{1}{a}-\frac{1}{b}=0\)

<=> \(\frac{x}{x\left(a+b-x\right)}+\frac{a+b-x}{x\left(a+b-x\right)}-\frac{b}{ab}-\frac{a}{ab}\)

<=> \(\frac{a+b}{x\left(a+b-x\right)}-\frac{a+b}{ab}=0\)

<=> \(\left(a+b\right)\left(\frac{1}{x\left(a+b-x\right)}-\frac{1}{ab}\right)=0\)

* Nếu a = - b thì tập nghiệm cuả pt là S = R

* Nếu a \(\ne\) b thì \(\frac{1}{x\left(a+b-x\right)}-\frac{1}{ab}=0\)

<=> \(\frac{ab}{abx\left(a+b-x\right)}-\frac{x\left(a+b-x\right)}{abx\left(a+b-x\right)}=0\)

<=> \(\frac{ab-\text{ax}-bx+x^2}{abx\left(a+b-x\right)}=0\)

<=> \(\frac{b\left(a-x\right)-x\left(a-x\right)}{abx\left(a+b-x\right)}=0\)

<=> \(\frac{\left(a-x\right)\left(b-x\right)}{abx\left(a+b-x\right)}=0\)

<=> \(\left[\begin{matrix}a-x=0\\b-x=0\end{matrix}\right.\)

<=> \(\left[\begin{matrix}x=a\\x=b\end{matrix}\right.\)

Vậy tập nghiệm của pt là S = {a ; b}

25 tháng 2 2017

\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\) (ĐKXĐ: x \(\ne\) 0

<=> \(\frac{x\left(x+1\right)\left(x^2-x+1\right)}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}-\frac{x\left(x-1\right)\left(x^2+x+1\right)}{x\left(x^2-x+1\right)\left(x^2+x+1\right)}=\frac{3}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}\)

=> \(\left(x^4+x\right)-\left(x^4-x\right)=3\)

<=> \(2x-3=0\)

<=> \(x=\frac{3}{2}\) (nhận)

Vậy S = {1,5}

4 tháng 5 2019

b, \(\frac{1}{x-1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\left(ĐKXĐ:x\ne\pm1;x\ne2\right)\)

\(\Leftrightarrow\)\(\frac{1}{x-1}+\frac{5}{2-x}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)

\(\Leftrightarrow\)\(\frac{\left(x+1\right)\left(2-x\right)+5\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(2-x\right)\left(x-1\right)}=\frac{15\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(2-x\right)}\)

Suy ra:

\(\Leftrightarrow\)(x+1)(2-x)+5(x-1)(x+1) = 15(x-1)

\(\Leftrightarrow\)2x-x2-x+2+5x2-5 = 15x-15

\(\Leftrightarrow\)2x-x2-x+5x2-15x = -15+5-2

\(\Leftrightarrow\)4x2-14x = -12

\(\Leftrightarrow4x^2-14x+12=0\)

\(\Leftrightarrow4x^2-8x-6x+12=0\)

\(\Leftrightarrow\)4x(x-2) - 6(x-2) = 0

\(\Leftrightarrow\left(x-2\right)\left(4x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(kotm\right)\\x=\frac{3}{2}\left(tm\right)\end{matrix}\right.\)

Vậy pt có nghiệm duy nhất x = \(\frac{3}{2}\)

30 tháng 1 2019

a) \(\frac{x^2-2x+2}{x^2+x+1}-\frac{x^2}{x^2+x+1}=\frac{3}{\left(x^4+x^2+1\right)x}\)

\(\Leftrightarrow\frac{x^2-2x+2}{x^2-x+1}.x\left(x^2-x+1\right)\left(x^2+x+1\right)-\frac{x^2}{x^2+x+1}.x\left(x^2-x+1\right)\left(x^2+x+1\right)\)\(=\frac{3}{\left(x^4+x^2+1\right)x}.x\left(x^2-x+1\right)\left(x^2+x+1\right)\)

\(\Leftrightarrow x\left(x^2-2x+2\right)\left(x^2+x+1\right)\left(x^4+x^2+1\right)-x^3\left(x^2-x+1\right)\left(x^4+x^2+1\right)\)\(=3\left(x^2-x+1\right)\left(x^2+x+1\right)\)

\(\Rightarrow x=\frac{3}{2}\)

b) làm tương tự nhé