Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có:
\(\frac{x-1}{x+2}=\frac{4}{5}\Leftrightarrow5\left(x-1\right)=4\left(x+2\right)\)
\(\Leftrightarrow5x-5=4x+8\)
\(\Leftrightarrow5x-4x=8+5\)
\(\Leftrightarrow x=13\)
b)Ta có:
\(2^{2x+1}+4^{x+3}=2^{2x+1}+2^{2x+6}=2^{2x+1}\left(1+2^5\right)=2^{2x+1}.33=264\Leftrightarrow2^{2x+1}=8=2^3\)\(\Rightarrow2x+1=3\Leftrightarrow2x=2\Leftrightarrow x=1\)
c)Ta có:
\(\frac{x^2}{-8}=\frac{27}{x}\Leftrightarrow x^3=-8.27=-216\Leftrightarrow x=-6\)
d)Ta có:
\(\frac{x+7}{-20}=\frac{-5}{x+7}\Leftrightarrow\left(x+7\right)^2=\left(-20\right)\left(-5\right)=100\Leftrightarrow\left[{}\begin{matrix}x+7=10\\x+7=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-17\end{matrix}\right.\)e)Ta có:
\(\frac{x}{-8}=\frac{2}{-x^3}\Leftrightarrow x.\left(-x^3\right)=-8.2\)
\(\Leftrightarrow-x^4=-16\Leftrightarrow x^4=16\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
1) \(\frac{x+1}{15}+\frac{x+2}{14}=\frac{x+3}{13}+\frac{x+4}{12}\)
\(\Leftrightarrow\frac{x+16}{15}+\frac{x+16}{14}-\frac{x+16}{13}-\frac{x+16}{12}=0\)
\(\Leftrightarrow\left(x+16\right)\left(\frac{1}{15}+\frac{1}{14}-\frac{1}{13}-\frac{1}{12}\right)=0\)
\(\Leftrightarrow x=-16\)
2)3)4) tương tự
Gợi ý : 2) cộng 3 vào cả hai vế
3)4) cộng 2 vào cả hai vế
5) \(\frac{x+1}{20}+\frac{x+2}{19}+\frac{x+3}{18}=-3\)
\(\Leftrightarrow\frac{x+21}{20}+\frac{x+21}{19}+\frac{x+21}{18}=0\)
\(\Leftrightarrow\left(x+21\right)\left(\frac{1}{20}+\frac{1}{19}+\frac{1}{18}\right)=0\)
\(\Leftrightarrow x=-21\)
6) sửa VT = 4 rồi tương tự câu 5)
a) \(\frac{x-3}{x+5}=\frac{5}{7}\)
\(\Rightarrow\left(x-3\right).7=\left(x+5\right).5\)
\(\Rightarrow7x-21=5x+25\)
\(\Rightarrow7x-5x=21+25\)
\(\Rightarrow2x=46\)
\(\Rightarrow x=23\)
Vậy \(x=23\)
b) \(\frac{7}{x-1}=\frac{x+1}{9}\)
\(\Rightarrow\left(x-1\right).\left(x+1\right)=7.9\)
\(\Rightarrow\left(x-1\right)x-\left(x+1\right)=7.9\)
\(\Rightarrow x^2-x-x-1=63\)
\(\Rightarrow x^2-1=63\)
\(\Rightarrow x^2=64\)
\(\Rightarrow x=8\) hoặc \(x=-8\)
Vậy \(x=8\) hoặc \(x=-8\)
c) \(\frac{x+4}{20}=\frac{5}{x+4}\)
\(\Rightarrow\left(x+4\right)^2=100\)
\(\Rightarrow x+4=\pm10\)
+) \(x+4=10\Rightarrow x=6\)
+) \(x+4=-10\Rightarrow x=-16\)
Vậy \(x\in\left\{6;-16\right\}\)
a: =>x-8/5=1/20-1/10=-1/20
=>x=-0,05+1,6=1,55
b: =>x-3/2=4/3 hoặc x-3/2=-4/3
=>x=17/6 hoặc x=1/6
c: =>\(\left|x-\dfrac{1}{3}\right|=\dfrac{5}{2}-\dfrac{1}{4}+\dfrac{2}{3}=\dfrac{35}{12}\)
=>x-1/3=35/12 hoặc x-1/3=-35/12
=>x=39/12=13/4 hoặc x=-31/12
d: =>|x-5/8|=3/4
=>x-5/8=3/4 hoặc x-5/8=-3/4
=>x=11/8 hoặc x=-1/8
a) Đặt A=\(\frac{x^2-1}{x^2}\)
Ta có:
\(\Rightarrow A=\frac{x^2}{x^2}-\frac{1}{x^2}\)
\(\Rightarrow A=1-\frac{1}{x^2}\)
\(\Rightarrow x\in Z\) để thỏa mãn A<0
b)\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
=>(a^2+b^2)*cd=(c^2+d^2)*ab
a^2cd+b^2cd=abc^c+abd^2
a^2cd+b^2cd-c^2ab-d^2ab=0
(a^2cd-abd^2+(b^2cd-abc^2)=0
ad(ac-bd)-bc(ac-bd)=0
(ad-bc)(ac-bd)=0
=>ad-bc=0 hoặc ac-bd=0
ad=bc ac=bd
=>a/b=c/d hoặc a/d=b/c
1) \(\frac{x-1}{3}=\frac{5-x}{7}\Leftrightarrow7.\left(x-1\right)=3.\left(5-x\right)\)
\(\Leftrightarrow7x-7=15-3x\)
\(\Leftrightarrow7x+3x=15+7\)
\(\Leftrightarrow10x=22\)
\(\Leftrightarrow x=\frac{11}{5}\)
2) \(\frac{x-1}{-5}=\frac{-20}{x-1}\)
\(\Leftrightarrow\left(x-1\right)^2=\left(-20\right).\left(-5\right)=100\)
\(\Leftrightarrow100=\orbr{\begin{cases}10^2\\\left(-10\right)^2\end{cases}}\)
Nếu x - 1 = 10 => x = 11
Nếu x - 1 = -10 => x = -9
Vậy ....
3) \(3\sqrt{x-3}+5=\left|-8\right|\)
\(\Leftrightarrow3\sqrt{x-3}+5=8\)
\(\Leftrightarrow3\sqrt{x-3}=3\)
\(\Leftrightarrow\sqrt{x-3}=1\) (ĐK: \(x\ge3\))
\(\Leftrightarrow\left(\sqrt{x-3}\right)^2=1^2\)
\(\Leftrightarrow x-3=1\)
\(\Leftrightarrow x=4\) (nhận)
Vậy x = 4
\(\frac{x+1}{20}=\frac{5}{x+1}\Leftrightarrow\left(x+1\right)^2=100\)
TH1 : \(x+1=10\Leftrightarrow x=9\)
TH2 : \(x+1=-10\Leftrightarrow x=-11\)