Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\frac{\frac{x-3+5}{5}}{4}=\frac{\frac{4x-3}{6}}{6}\Leftrightarrow\frac{x+2}{20}=\frac{4x-3}{36}\Leftrightarrow36x+72=80x-60\Leftrightarrow44x=132\Rightarrow x=2\)
\(\Leftrightarrow\frac{\frac{10x+x+2}{2}}{9}-\frac{\frac{x+3+75}{5}}{12}=x-2\)\(\Leftrightarrow\frac{11x+2}{18}-\frac{x+78}{60}=x-2\)\(\Leftrightarrow\left(\frac{11}{18}-\frac{1}{60}-1\right)x+\left(\frac{2}{18}-\frac{78}{60}+2\right)=0\).Giải típ nha, ko có Casio nên mk ko bấm
\(\Rightarrow\frac{x}{15}=\frac{x}{12}-\frac{2}{12}\)
\(\Rightarrow\frac{x}{15}=\frac{x-2}{12}\)
\(\Leftrightarrow15.\left(x-2\right)=12x\)
\(\Rightarrow15x-30=12x\)
\(\Leftrightarrow15x-12x=30\)
\(\Leftrightarrow3x=30\)
\(\Rightarrow x=30:3\)
\(\Rightarrow x=10\)
\(\frac{x}{15}=\frac{x}{12}-\frac{1}{6}\)
\(\Leftrightarrow\frac{x}{15}=\frac{x-2}{12}\)
\(\Leftrightarrow12x=15\left(x-2\right)\)
\(\Leftrightarrow12x=15x-30\)
\(\Leftrightarrow3x-30=0\)
\(\Leftrightarrow3\left(x-10\right)=0\Leftrightarrow x-10=0\Leftrightarrow x=10\)\
Vậy x=10
a) \(\frac{x}{3}-\frac{5x}{6}-\frac{15x}{12}=\frac{x}{4}-5\)
\(\Leftrightarrow\frac{4x-10x-15x}{12}=\frac{3x-60}{12}\)
\(\Leftrightarrow-21x=3x-60\)
\(\Leftrightarrow24x=60\)
\(\Leftrightarrow x=\frac{5}{2}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{5}{2}\right\}\)
b) \(\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{2}+\frac{x+3}{4}\)
\(\Leftrightarrow\frac{\left(8x-3\right)-2\left(3x-2\right)}{4}=\frac{2\left(2x-1\right)+\left(x+3\right)}{4}\)
\(\Leftrightarrow8x-3-6x+4=4x-2+x+3\)
\(\Leftrightarrow2x+1=5x+1\)
\(\Leftrightarrow2x=5x\)
\(\Leftrightarrow x=0\)
Vậy tập nghiệm của phương trình là \(S=\left\{0\right\}\)
c) \(\frac{x-1}{2}-\frac{x+1}{15}-\frac{2x-13}{6}=0\)
\(\Leftrightarrow\frac{15\left(x-1\right)-2\left(x+1\right)-5\left(2x-13\right)}{30}=0\)
\(\Leftrightarrow15x-15-2x-2-10x+65=0\)
\(\Leftrightarrow3x+48=0\)
\(\Leftrightarrow x=-16\)
Vậy tập nghiệm của phương trình là \(S=\left\{-16\right\}\)
d) \(\frac{3\left(3-x\right)}{8}+\frac{2\left(5-x\right)}{3}=\frac{1-x}{2}-2\)
\(\Leftrightarrow\frac{9\left(3-x\right)+16\left(5-x\right)}{24}=\frac{12\left(1-x\right)-48}{24}\)
\(\Leftrightarrow27-9x+80-16x=12-12x-48\)
\(\Leftrightarrow-25x+107=-12x-36\)
\(\Leftrightarrow-13x+143=0\)
\(\Leftrightarrow x=11\)
Vậy tập nghiệm của phương trình là \(S=\left\{11\right\}\)
1.
\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
\(MC:12\)
Quy đồng :
\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)
\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)
\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)
\(\Leftrightarrow6x+9-3x=-4-9+16\)
\(\Leftrightarrow-7x=3\)
\(\Leftrightarrow x=\frac{-3}{7}\)
2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
\(MC:20\)
Quy đồng :
\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)
\(\Leftrightarrow30x+15-20=15x-2\)
\(\Leftrightarrow15x=3\)
\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)
g) \(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\)
\(\Leftrightarrow\left(\frac{x+2}{98}+1\right)+\left(\frac{x+4}{96}+1\right)=\left(\frac{x+6}{94}+1\right)+\left(\frac{x+8}{92}+1\right)\)
\(\Leftrightarrow\left(\frac{x+2+98}{98}\right)+\left(\frac{x+4+96}{96}\right)=\left(\frac{x+6+94}{94}\right)+\left(\frac{x+8+92}{92}\right)\)
\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{96}=\frac{x+100}{94}+\frac{x+100}{92}\)
\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{96}-\frac{x+100}{94}-\frac{x+100}{92}=0\)
\(\Leftrightarrow\left(x+100\right).\left(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\right)=0\)
Vì \(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\ne0.\)
\(\Leftrightarrow x+100=0\)
\(\Leftrightarrow x=0-100\)
\(\Leftrightarrow x=-100.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{-100\right\}.\)
h) \(\frac{x-12}{77}+\frac{x-11}{78}=\frac{x-74}{15}+\frac{x-73}{16}\)
\(\Leftrightarrow\left(\frac{x-12}{77}-1\right)+\left(\frac{x-11}{78}-1\right)=\left(\frac{x-74}{15}-1\right)+\left(\frac{x-73}{16}-1\right)\)
\(\Leftrightarrow\left(\frac{x-12-77}{77}\right)+\left(\frac{x-11-78}{78}\right)=\left(\frac{x-74-15}{15}\right)+\left(\frac{x-73-16}{16}\right)\)
\(\Leftrightarrow\frac{x-89}{77}+\frac{x-89}{78}=\frac{x-89}{15}+\frac{x-89}{16}\)
\(\Leftrightarrow\frac{x-89}{77}+\frac{x-89}{78}-\frac{x-89}{15}-\frac{x-89}{16}=0\)
\(\Leftrightarrow\left(x-89\right).\left(\frac{1}{77}+\frac{1}{78}-\frac{1}{15}-\frac{1}{16}\right)=0\)
Vì \(\frac{1}{77}+\frac{1}{78}-\frac{1}{15}-\frac{1}{16}\ne0.\)
\(\Leftrightarrow x-89=0\)
\(\Leftrightarrow x=0+89\)
\(\Leftrightarrow x=89.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{89\right\}.\)
Chúc bạn học tốt!
b, \(\frac{1}{x-1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\left(ĐKXĐ:x\ne\pm1;x\ne2\right)\)
\(\Leftrightarrow\)\(\frac{1}{x-1}+\frac{5}{2-x}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
\(\Leftrightarrow\)\(\frac{\left(x+1\right)\left(2-x\right)+5\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(2-x\right)\left(x-1\right)}=\frac{15\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(2-x\right)}\)
Suy ra:
\(\Leftrightarrow\)(x+1)(2-x)+5(x-1)(x+1) = 15(x-1)
\(\Leftrightarrow\)2x-x2-x+2+5x2-5 = 15x-15
\(\Leftrightarrow\)2x-x2-x+5x2-15x = -15+5-2
\(\Leftrightarrow\)4x2-14x = -12
\(\Leftrightarrow4x^2-14x+12=0\)
\(\Leftrightarrow4x^2-8x-6x+12=0\)
\(\Leftrightarrow\)4x(x-2) - 6(x-2) = 0
\(\Leftrightarrow\left(x-2\right)\left(4x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(kotm\right)\\x=\frac{3}{2}\left(tm\right)\end{matrix}\right.\)
Vậy pt có nghiệm duy nhất x = \(\frac{3}{2}\)
a, Ta có : \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\)
=> \(\frac{3\left(2x-1\right)}{15}-\frac{5\left(x-2\right)}{15}=\frac{x+7}{15}\)
=> \(3\left(2x-1\right)-5\left(x-2\right)=x+7\)
=> \(6x-3-5x+10-x-7=0\)
=> \(0=0\)
Vậy phương trình có vô số nghiệm .
b, Ta có : \(\frac{x+3}{2}-\frac{x-1}{3}=\frac{x+5}{6}+1\)
=> \(\frac{3\left(x+3\right)}{6}-\frac{2\left(x-1\right)}{6}=\frac{x+5}{6}+\frac{6}{6}\)
=> \(3\left(x+3\right)-2\left(x-1\right)=x+5+6\)
=> \(3x+9-2x+2-x-5-6=0\)
=> \(0=0\)
Vậy phương trình có vô số nghiệm .
c, Ta có : \(\frac{2\left(x+5\right)}{3}+\frac{x+12}{2}-\frac{5\left(x-2\right)}{6}=\frac{x}{3}+11\)
=> \(\frac{4\left(x+5\right)}{6}+\frac{3\left(x+12\right)}{6}-\frac{5\left(x-2\right)}{6}=\frac{2x}{6}+\frac{66}{6}\)
=> \(4\left(x+5\right)+3\left(x+12\right)-5\left(x-2\right)=2x+66\)
=> \(4x+20+3x+36-5x+10-2x-66=0\)
=> \(0=0\)
Vậy phương trình có vô số nghiệm .
\(\frac{x}{12}-\frac{x}{15}=\frac{1}{6}\)
\(\Leftrightarrow\frac{5x}{60}-\frac{4x}{60}=\frac{10}{60}\)
\(\Leftrightarrow5x-4x=10\)
\(\Leftrightarrow x=10\)
Ta có : \(\frac{x}{12}-\frac{x}{15}=\frac{1}{6}\)
=> \(\frac{15x}{12.15}-\frac{12x}{12.15}=\frac{1}{6}\)
=> \(\frac{15x-12x}{180}=\frac{1}{6}\)
=> \(\frac{3x}{180}=\frac{1}{6}\)
=> \(\frac{x}{60}=\frac{1}{6}\)
=> \(6x=60\)
=> \(x=60:6\)
=> \(x=10\)