
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\frac{x-2}{4}=\frac{-9}{2-x}\)
\(\Rightarrow\frac{x-2}{4}=\frac{9}{x-2}\)
\(\Rightarrow\left(x-2\right)^2=36\)
\(\Rightarrow\left(x-2\right)^2=\left(\pm6\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=6\\x-2=-6\end{cases}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-4\end{cases}}}\)
\(\frac{x}{15}=\frac{3}{y}\)
\(\Rightarrow xy=45\)
\(\Rightarrow x;y\inƯ\left(45\right)=\left\{\pm1;\pm3;\pm5;\pm9;\pm15;\pm45\right\}\)
Xét bảng
x | 1(loại) | -1 | 3(loại) | -3 | 5(loại) | -5 | 45 | -45(loại) | 15 | -15(loại) | 9 | -9(loại) |
y | 45(loại) | -45 | 15(loại) | -15 | 9(loại) | -9 | 1 | -1(loại) | 3 | -3(loại) | 5 | -5(loại) |
Vậy.......................................
d;Áp dụng tích chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{3}=\frac{x+y}{4+3}=\frac{14}{7}=2\)
\(\Rightarrow x=4.2=8\)
\(y=3.2=6\)

\(\frac{3}{2x+1}+\frac{10}{4x+2}-\frac{6}{6x+3}=\frac{6}{13}\)
\(\Rightarrow\frac{3}{2x+1}+\frac{5}{2x+1}-\frac{2}{2x+1}=\frac{6}{13}\)
\(\Rightarrow\frac{6}{2x+1}=\frac{6}{13}\Rightarrow2x+1=13\Rightarrow x=6\)
mình giải hơi gọn có gì ko hiểu thì hỏi nha !

1, \(\frac{x+6}{x+1}=\frac{x+1+5}{x+1}=\frac{x+1}{x+1}+\frac{5}{x+1}=1+\frac{5}{x+1}\)
2,\(\frac{x-2}{x+3}=\frac{x+3-5}{x+3}=\frac{x+3}{x+3}-\frac{5}{x+3}=1-\frac{5}{x+3}\)
3,\(\frac{2x+1}{x+3}=\frac{2x+6-5}{x+3}=\frac{2x+6}{x+3}-\frac{5}{x+3}=2-\frac{5}{x+3}\)

\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)
\(>\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4.5}+...+\frac{1}{50.51}\right)=\frac{1}{4}.\left(1+\frac{1}{4}+\frac{1}{9}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{50}-\frac{1}{51}\right)\)
\(=\frac{1}{4}.\left(1+\frac{1}{4}+\frac{1}{4}+\frac{1}{9}-\frac{1}{51}\right)>\frac{1}{4}.\left(1+\frac{1}{4}+\frac{1}{4}+\frac{1}{9}-\frac{1}{9}\right)=\frac{1}{4}.\left(1+\frac{1}{4}+\frac{1}{4}\right)=\frac{1}{4}.\frac{3}{2}=\frac{3}{8}\)
\(\Rightarrow A>\frac{3}{8}\left(đpcm\right)\)
Ta có: \(\frac{x+1}{-6}>\frac{1}{-2}\)
=>\(\frac{x+1}{6}<\frac12\)
=>x+1<3
=>x<2
\(\frac{x+1}{-6}\) > \(\frac{-1}{2}\)
\(\frac{x+1}{-6}\) x (-12) < \(\frac{-1}{2}\) x (-12) (nhân cả hai vế của bất đẳng thức với cùng một số âm, dấu của bất đẳng thức đổi chiều)
\(\left(x+1\right)\times2\) < 6
\(x+1<\frac62\)
\(x+1\) < 3
\(x<3-1\)
\(\) \(x\) < 2
Vậy \(x<2\)