Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1985\cdot1987-1\right):\left(1980+1985\cdot1986\right)\)
\(A=3944194\div3944190\)
ko chia hết nên sẽ bằng 1,4 lớn hơn 1
\(\Rightarrow A>1\)
1985x1987-1/1980+1985x1986=1985x1986+1985-1/1980+1985x1986
=1985x1986+1984/1980+1985x1986.Vì 1985x1986+1984>1980+1985x1986
suy ra 1985x1987-1/1980+1985x1986>1
Đây là cuộc thi nhé. cần sự công bằng. Mong em không tái phạm lần sau. Bạn sẽ bị khóa nick hoặc trừ 5000 điểm nhé!
BQT thân gửi em!
__BQT Lớp 6/7 Hỏi Đáp__
\(\frac{1985\times1987-1}{1984+1985\times1986}\)
\(=\frac{1985\times\left(1986+1\right)-1}{1984+1985\times1986}\)
\(=\frac{1985\times1986+1985-1}{1984+1985\times1986}\)
\(=\frac{1985\times1986+1984}{1984+1985\times1986}\)
\(=1\)
----------HOK TỐT-----------
Câu hỏi của kudo - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo bài làm tại link này nhé!
Ta có: \(A=124\left(\frac{1}{1.1985}+\frac{1}{2.1986}+\frac{1}{3.1987}+...+\frac{1}{16.2000}\right)\)
\(=\frac{124}{1984}\left(\frac{1984}{1.1985}+\frac{1984}{2.1986}+\frac{1984}{3.1987}+...+\frac{1984}{16.2000}\right)\)
\(=\frac{1}{16}\left(1-\frac{1}{1985}+\frac{1}{2}-\frac{1}{1986}+\frac{1}{3}-\frac{1}{1987}+...+\frac{1}{16}-\frac{1}{2000}\right)\)
\(=\frac{1}{16}\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{16}\right)-\left(\frac{1}{1985}+\frac{1}{1986}+\frac{1}{1987}+...+\frac{1}{2000}\right)\right]\)
\(B=\frac{1}{1.17}+\frac{1}{2.19}+...+\frac{1}{1984.2000}\)
\(=\frac{1}{16}\left(\frac{16}{1.17}+\frac{16}{2.18}+...+\frac{16}{1984.2000}\right)\)
\(=\frac{1}{16}\left(1-\frac{1}{17}+\frac{1}{2}-\frac{1}{18}+...+\frac{1}{1984}-\frac{1}{2000}\right)\)
\(=\frac{1}{16}\left[\left(1+\frac{1}{2}+...+\frac{1}{1984}\right)\right]-\left[\frac{1}{17}+\frac{1}{18}+...+\frac{1}{2000}\right]\)
\(=\frac{1}{16}\left[\left(1+\frac{1}{2}+...+\frac{1}{16}\right)+\left(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{1984}\right)-\left(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{1984}\right)-\left(\frac{1}{1985}+\frac{1}{1986}+...+\frac{1}{2000}\right)\right]\)
\(=\frac{1}{16}\left[\left(1+\frac{1}{2}+...+\frac{1}{16}\right)-\left(\frac{1}{1985}+\frac{1}{1986}+...+\frac{1}{2000}\right)\right]\)
Vậy A = B