Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm 1 phép thôi nha những phép còn lại bạn tự nghĩ nhé !
\(\frac{x}{7}=\frac{y}{3}\) và \(x-24=y\)'
Ta có : \(x-24=y\) hay cũng có thể viết \(x-y=24\)
Ta lại có : \(\frac{x}{7}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau nên ta được :
\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{24}{4}=6\) ( vì \(x-y=24\) )
\(\Rightarrow\frac{x}{7}=6\Rightarrow x=6\cdot7\Rightarrow x=42\)
\(\Rightarrow\frac{y}{3}=6\Rightarrow y=6\cdot3\Rightarrow y=18\)
Vậy \(x=42\) và \(y=18\)
a)Ta có : 2x+2y-z-7=0 => 2x+2y-z=7
Ta có : \(x=\frac{y}{2}=>\frac{x}{2}=\frac{y}{4}\)
Mà \(\frac{y}{4}=\frac{z}{5}\)nên \(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}=\frac{2x+2y-z}{4+8-5}=\frac{7}{7}=1\)
Từ \(\frac{x}{2}=1=>x=2\)
Từ\(\frac{y}{4}=1=>y=4\)
Từ \(\frac{z}{5}=1=>z=5\)
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}\)
a) Xem lại đề
b) Ta có: \(2x=4y=5z\)=> \(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{5}}\) => \(\frac{2x}{1}=\frac{3y}{\frac{3}{4}}=\frac{z}{\frac{1}{5}}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{1}=\frac{3y}{\frac{3}{4}}=\frac{z}{\frac{1}{5}}=\frac{2x-3y-z}{1-\frac{3}{4}-\frac{1}{5}}=\frac{1}{\frac{1}{20}}=20\)
=> \(\hept{\begin{cases}\frac{x}{\frac{1}{2}}=20\\\frac{y}{\frac{1}{4}}=20\\\frac{z}{\frac{1}{5}}=20\end{cases}}\) => \(\hept{\begin{cases}x=20.\frac{1}{2}=10\\y=20.\frac{1}{4}=5\\z=20.\frac{1}{5}=4\end{cases}}\)
Vậy x = 10; y = 5 và z = 4
a)\(\frac{x}{5}=\frac{y}{6};\frac{y}{2}=\frac{z}{3}\)va \(x^3-2x^2y+z^3\)
nguyen tran phuong vy: vt sai kìa, phải là I don't know
1) Áp dụng tích chất dãy tỉ số bằng nhau ta có:
\(\frac{x+y}{2015}=\frac{xy}{2016}=\frac{x-y}{2017}=\frac{x+y-x+y}{2015-2017}=\frac{2y}{-2}\)
\(=-y\)
\(\Rightarrow xy=-2016y;x+y=-2015y;\)
\(x-y=-2017y\)
\(\Rightarrow-2016y-xy=0\)
\(\Rightarrow y\left(-2016-x\right)=0\)
\(\Rightarrow\orbr{\orbr{\begin{cases}y=0\\-2016-x=0\end{cases}\Rightarrow}}\orbr{\begin{cases}y=0\\x=-2016\end{cases}}\)
\(+) \)\(y=0\Rightarrow0+x=-2015.0=0\Rightarrow x=0\)
\(+) \)\(x=-2016\Rightarrow-2016-y=-2017y\Rightarrow-2016\)
Vậy +) x=y=0
+) x=-2016;y=1
2) Có: \(\frac{2x+2}{3}=\frac{x+1}{1,5};\frac{4z+2}{5}=\frac{z+0,5}{1,25};\frac{3y-1}{4}=\frac{y-\frac{1}{3}}{\frac{4}{3}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+1}{1,5}=\frac{y-\frac{1}{3}}{\frac{4}{3}}=\frac{z+0,5}{1,25}=\frac{x+y+z+\left(1-\frac{1}{3}+0,5\right)}{1,5+\frac{4}{3}+1,25}=\frac{7+\frac{7}{6}}{\frac{49}{12}}=2\)
Suy ra: \(x+1=2.1,5=3\Rightarrow x=2\)
\(y-\frac{1}{3}=2.\frac{4}{3}=\frac{8}{3}\Rightarrow y=3\)
\(z+0,5=2.1,25=2,5\Rightarrow z=2\)
Vậy x=2;y=3;z=2.
2) Ta có: \(\hept{\begin{cases}3x=2y;7y=5z\\x-y+z=32\end{cases}\Rightarrow\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}.}\)
\(\Rightarrow\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
Vậy \(\hept{\begin{cases}x=2.10=20\\y=2.15=30\\z=2.21=42\end{cases}}\)
Ủng hộ nha m.n
Tim x , y, z , biet
\(\frac{x}{3}\)=\(\frac{y}{4}\); \(\frac{y}{3}\)=\(\frac{Z}{5}\) Va 2x - 3y + z=6
Ta có:\(\frac{x}{3}=\frac{y}{4}\)\(\Rightarrow\frac{x}{9}=\frac{y}{12}\)
\(\frac{y}{3}=\frac{z}{5}\)\(\Rightarrow\frac{y}{12}=\frac{z}{20}\)
Suy ra:\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
Đặt\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=k\)
\(\Rightarrow\hept{\begin{cases}x=9k\\y=12k\\z=20k\end{cases}}\)
Mà\(2x-3y+z=6\)
\(\Rightarrow2.9k-3.12k+20k=6\)
\(\Leftrightarrow18k-36k+20k=6\)
\(\Leftrightarrow2k=6\)
\(\Leftrightarrow k=3\)
\(\Rightarrow\hept{\begin{cases}x=3.9=27\\y=3.12=36\\z=3.20=60\end{cases}}\)(Thỏa mãn)
Vậy\(\hept{\begin{cases}x=27\\y=36\\z=60\end{cases}}\)
Linz
Ta có : \(\hept{\begin{cases}\frac{x}{3}=\frac{y}{4}\\\frac{y}{3}=\frac{z}{5}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{9}=\frac{y}{12}\\\frac{y}{12}=\frac{z}{20}\end{cases}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}}\)
=> \(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)(dãy tỉ số bằng nhau)
=> x = 27 ; y = 36 ; z = 60
e, Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
\(\Rightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{\left(x-2y+3z\right)+\left(-1+4-9\right)}{8}=\frac{14-6}{8}=1\)
Do đó: \(\frac{x-1}{2}=1\Rightarrow x=2.1+1=3\)
\(\frac{2y-4}{6}=1\Rightarrow y=\frac{6.1+4}{2}=5\)
\(\frac{3z-9}{12}=1\Rightarrow z=\frac{12.1+9}{3}=7\)
Vậy x=3; y=5; z=7
h, Ta có: \(\frac{x}{2}=\frac{y}{3}=\left(\frac{x}{2}\right)^2=\left(\frac{y}{3}\right)^2=\frac{x^2}{4}=\frac{y^2}{9}=\frac{x.y}{2.3}=\frac{54}{6}=9\)
Do đó: \(\frac{x^2}{4}=9\Rightarrow x^2=4.9=36\Rightarrow x=6;x=-6\)
\(\frac{y^2}{9}=9\Rightarrow y^2=9.9=81\Rightarrow y=9;y=-9\)