Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐK: x;y;z\(\ne0\)
a + b + c = => (a + b + c)2 = 1
=> a2 + b2 + c2 + 2(ab + bc + ca) = 1
Theo đề bài lại có: a2 + b2 + c2 = 1
Do đó 2(ab + bc + ca) = 0
<=> ab + bc + ca = 0
Ta có: \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)\(\Rightarrow\frac{a^2}{x^2}=\frac{ab}{xy}=\frac{bc}{yz}=\frac{ac}{xz}\) (*)
+ Nếu xy + yz + xz = 0, ta có đpcm
+ Nếu \(xy+yz+xz\ne0\)
Áp dụng t/c của dãy tỉ số = nhau ta có:
\(\frac{a^2}{x^2}=\frac{ab}{xy}=\frac{bc}{yz}=\frac{ca}{xz}=\frac{ab+bc+ca}{xy+yz+xz}=0\)\(\Rightarrow a=b=c=0\)
=> a + b + c = 0, mâu thuẫn với đề
Vậy ta có đcpm
![](https://rs.olm.vn/images/avt/0.png?1311)
1) Nhìn cái pt hết ham, nhưng bấm nghiệm đẹp v~`~
\(\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)=2x\sqrt{2}-\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-\sqrt{2}+2x\sqrt{2}-2-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-2=0\Leftrightarrow2x=2\Rightarrow x=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\frac{x-1}{2x}+\frac{2x+1}{2x}+\frac{1-5x}{6x}\)
\(=\frac{3x-3}{6x}+\frac{6x+3}{6x}+\frac{1-5x}{6x}\)
\(=\frac{3x-3+6x+3+1-5x}{6x}\)
\(=\frac{4x+1}{6x}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
đặt x^2-7x=y=> \(y\ge-\frac{49}{4}\) (*)
\(A=y\left(y+12\right)=y^2+12y=\left(y+6\right)^2-36\ge-36\)
đẳng thức khi y=-6 thủa mãn đk (*)
Vậy: GTNN của A=-36 khí y=-6 =>\(\left[\begin{matrix}x=1\\x=6\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: \(\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)\)
\(=x\left(x^4+x^3+x^2+x+1\right)\)\(-\left(x^4+x^3+x^2+x+1\right)\)
\(=x^5+x^4+x^3+x^2+x-x^4-x^3-x^2-x-1\)
\(=x^5-1\)
Vậy \(\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)\)\(=x^5-1\)
hay \(\frac{x^5-1}{x-1}=x^4+x^3+x^2+x+1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\frac{a}{b}+\frac{b}{a}\ge2\)
\(\Leftrightarrow\frac{\left(a^2+b^2\right)}{ab}\ge2\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(*) (luôn đúng)
=> ĐPCM.
c) áp dụng BĐT Cô si cho hai số dương a và b , ta có:
\(a+b\ge2\sqrt{ab}\text{ va }\frac{1}{a}+\frac{1}{b}\ge\frac{1}{\sqrt{ab}}\)
\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
dấu "=" xảy ra khi <=> a = b.
P/s: bn tự làm nốt câu b) d) đi nha!
Đề bài là rút gọn phải không bạn?
\(\frac{\left[\left(a-n\right)2-\left(a+n\right)2\right]\left[\left(y-1\right)2-\left(y+1\right)2\right]}{16.e.m}.\frac{e.h}{u-1}\)
\(=\frac{\left[2a-2n-2a-2n\right]\left[2y-2-2y-2\right]}{16.e.m}.\frac{e.h}{u-1}\)
\(=\frac{\left(-2n\right)\left(-4\right).e.h}{16.e.m\left(u-1\right)}\)
\(=\frac{8.n.e.h}{16.e.m.\left(u-1\right)}=\frac{n.h}{2.m.\left(u-1\right)}\)
Trần Thùy Dung:mấy cái kia là lũy thừa 2