\(\frac{\text{(2007−x)^2+(2007−x)(x−2008)+(x−2008)^2}}{\text{(2007−x)^2−(2007−x)(2008−x)+(x−2008...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2018

Ta có: \(\frac{\left(2007-x\right)^2+\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}{\left(2007-x\right)^2-\left(2007-x\right)\left(2008-x\right)+\left(x-2008\right)^2}\)

\(=\frac{\left(2007-x\right)^2+\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}{\left(2007-x\right)^2+\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}\)

\(=1\)

9 tháng 3 2020

\(\frac{\left(2007-x\right)^2+\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}{\left(2007-x\right)^2-\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}=\frac{19}{49}\)

điểu kiện xác định x khác 2007 and x khác 2008

Đặt a=x-2008 ( a khác 0 ,) ta có hệ thức

\(\frac{\left(a+1\right)^2-\left(a+1\right)a+a^2}{\left(a+1\right)^2+\left(a+1\right)a+a^2}=\frac{19}{49}\)

=>\(\frac{a^2+a+1}{3a^2+3a+1}=\frac{19}{49}\)

=>\(49a^2+49a+49=57a^2+57a+19\)

=>\(8a^2+8a-30=0\)

=>\(\left(2a-1\right)^2-4^2=0=>\left(2a-3\right)\left(2a+5\right)=0\)

=>\(\orbr{\begin{cases}a=\frac{3}{2}\\a=-\frac{5}{2}\end{cases}}\)(Thỏa mãn điều kiện)

Tự thay a xong suy ra x nhá 

Mệt lắm r

9 tháng 3 2020

bài khó thế 

19 tháng 5 2020

a sai nha ! đọc ko kĩ đề !

19 tháng 5 2020

uh

mk giải cho mà saI CÓ đc tiền k

26 tháng 1 2018

đầu bài có sai k ạ???

11 tháng 2 2018

de bai hinh nhu khong sai ban a

23 tháng 2 2020

Ta có : \(\frac{x^2-2008}{2007}+\frac{x^2-2007}{2006}+\frac{x^2-2006}{2005}=\frac{x^2-2005}{2004}+\frac{x^2-2004}{2003}+\frac{x^2-2003}{2002}\)

=> \(\frac{x^2-2008}{2007}+1+\frac{x^2-2007}{2006}+1+\frac{x^2-2006}{2005}+1=\frac{x^2-2005}{2004}+1+\frac{x^2-2004}{2003}+1+\frac{x^2-2003}{2002}+1\)

=> \(\frac{x^2-2008}{2007}+\frac{2007}{2007}+\frac{x^2-2007}{2006}+\frac{2006}{2006}+\frac{x^2-2006}{2005}+\frac{2005}{2005}=\frac{x^2-2005}{2004}+\frac{2004}{2004}+\frac{x^2-2004}{2003}+\frac{2003}{2003}+\frac{x^2-2003}{2002}+\frac{2002}{2002}\)

=> \(\frac{x^2-1}{2007}+\frac{x^2-1}{2006}+\frac{x^2-1}{2005}=\frac{x^2-1}{2004}+\frac{x^2-1}{2003}+\frac{x^2-1}{2002}\)

=> \(\frac{x^2-1}{2007}+\frac{x^2-1}{2006}+\frac{x^2-1}{2005}-\frac{x^2-1}{2004}-\frac{x^2-1}{2003}-\frac{x^2-1}{2002}=0\)

=> \(\left(x^2-1\right)\left(\frac{1}{2007}+\frac{1}{2006}+\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}-\frac{1}{2002}\right)=0\)

=> \(x^2-1=0\)

=> \(x^2=1\)

=> \(x=\pm1\)

Vậy phương trình có 2 nghiệm là x = 1, x = -1 .

24 tháng 2 2020

Thanks bn

18 tháng 2 2020

\(pt\Leftrightarrow\frac{x}{2009}+\frac{1}{2009}+\frac{x}{2008}+\frac{2}{2008}=\frac{x}{3}+\frac{2007}{3}+\frac{x}{4}+\frac{2006}{4}\Leftrightarrow\frac{x}{2009}+\frac{x}{2008}-\frac{x}{3}-\frac{x}{4}=\frac{2006}{4}+\frac{2007}{3}-\frac{1}{1008}-\frac{1}{2009}\Leftrightarrow x\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{3}-\frac{1}{4}\right)=\frac{2006}{4}+\frac{2007}{3}-\frac{1}{1008}-\frac{1}{2009}\Leftrightarrow x=\frac{\frac{2006}{4}+\frac{2007}{3}-\frac{1}{1008}-\frac{1}{2009}}{\frac{1}{2009}+\frac{1}{2008}-\frac{1}{3}-\frac{1}{4}}=-2010\)

25 tháng 2 2017

\(\frac{x+2}{2008}+\frac{x+3}{2007}+\frac{x+4}{2006}+\frac{x+2028}{6}=0\)

\(\Leftrightarrow\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+3}{2007}+1\right)+\left(\frac{x+4}{2006}+1\right)+\frac{x+2010}{6}=0\)

\(\Leftrightarrow\frac{x+2010}{2008}+\frac{x+2010}{2007}+\frac{x+2010}{2006}+\frac{x+2010}{6}=0\)

\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}+\frac{1}{6}\right)=0\)

\(\Rightarrow x+2010=0\Rightarrow x=-2010\)

6 tháng 3 2017

đề ko có vấn đề nhỉ?

7 tháng 3 2017

Không chẳng có vấn đề gì cả. có thể sai so với cái đề nào đó "nội hàm nó đúng"

\(\dfrac{x+2}{2008}+\dfrac{x+3}{2007}=\dfrac{-x+4}{2006}+\dfrac{-x-2008}{6}\)

\(\left(\dfrac{1}{2008}+\dfrac{1}{2007}+\dfrac{1}{2006}+\dfrac{1}{6}\right).x=\left(\dfrac{4}{2006}-\dfrac{2008}{6}-\dfrac{2}{2008}-\dfrac{3}{2007}\right)\)\(x=\dfrac{\left(\dfrac{4}{2006}-\dfrac{2008}{6}-\dfrac{2}{2008}-\dfrac{3}{2007}\right)}{\left(\dfrac{1}{2008}+\dfrac{1}{2007}+\dfrac{1}{2006}+\dfrac{1}{6}\right).}\)

Thích thì rút gọn chẳng thích thì kệ nó

9 tháng 6 2016

Ta có: \(\frac{2-x}{2007}-1=\frac{1-x}{2008}-\frac{x}{2009}\)

=>\(\frac{2-x}{2007}=\frac{1-x}{2008}-\frac{x}{2009}+1\)

=>\(\frac{2-x}{2007}=\left(\frac{1-x}{2008}+1\right)-\frac{x}{2009}+1-1\)

=>\(\frac{2-x}{2007}+1=\frac{1-x+2008}{2008}+\left(1-\frac{x}{2009}\right)\)

=>\(\frac{2-x+2007}{2007}=\frac{2009-x}{2008}+\frac{2009-x}{2009}\)

=>\(\frac{2009-x}{2007}=\frac{2009-x}{2008}+\frac{2009-x}{2009}\)

=>\(\frac{2009-x}{2007}-\frac{2009-x}{2008}-\frac{2009-x}{2009}=0\)

=>\(\left(2009-x\right).\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)=0\)

Vì \(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\ne0\)

=>2009-x=-

=>x=2009

Vậy tập nghiệm của phương trình S=2009

9 tháng 6 2016

Lê Chí Cường nhầm đoạn cuối rồi kìa