Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK \(\hept{\begin{cases}x\ge0\\x\ne4;x\ne9\end{cases}}\)
a. P=\(\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-3}\right):\frac{2\sqrt{x}+2-\sqrt{x}}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}+2+\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}:\frac{\sqrt{x}+2}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}+2+x-9-x+4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}+1}{\sqrt{x}+2}=\frac{\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}+1}{\sqrt{x}+2}\)
\(=\frac{\sqrt{x}+1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
b. Với \(x=4-2\sqrt{3}\Rightarrow P=\frac{\sqrt{4-2\sqrt{3}}+1}{4-2\sqrt{3}-4}=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}+1}{-2\sqrt{3}}\)
\(=\frac{\sqrt{3}-1+1}{-2\sqrt{3}}=-\frac{1}{2}\)
c. Để \(\frac{1}{P}\le\frac{-5}{2}\Leftrightarrow\frac{x-4}{\sqrt{x}+1}+\frac{5}{2}\le0\Leftrightarrow\frac{2x-8+5\sqrt{x}+5}{2\left(\sqrt{x}+1\right)}\le0\)
\(\Leftrightarrow\frac{2x+5\sqrt{x}-3}{2\left(\sqrt{x}+1\right)}\le0\Leftrightarrow2x+5\sqrt{x}-3\le0\)vì \(2\left(\sqrt{x}+1\right)\ge0\forall x\ge0\)
\(\Leftrightarrow\left(\sqrt{x}+3\right)\left(2\sqrt{x}-1\right)\le0\Leftrightarrow2\sqrt{x}-1\le0\Leftrightarrow0\le x\le\frac{1}{4}\left(tm\right)\)
Vậy với \(0\le x\le\frac{1}{4}\)thì \(\frac{1}{P}\le-\frac{5}{2}\)
d. Ta có \(B=P\left(\sqrt{x}-2\right)=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}+1}{\sqrt{x}+2}=1-\frac{1}{\sqrt{x}+2}\)
Gỉa sử \(B\in Z\Leftrightarrow\sqrt{x}+2\inƯ\left(1\right)\Leftrightarrow\sqrt{x}+2\in\left\{-1;1\right\}\Leftrightarrow x\in\left\{\phi\right\}\)
Vậy B không nhận giá trị nguyên với mọi x để P có nghĩa
a) ĐKXĐ: \(\hept{\begin{cases}x-9\ne0\\\sqrt{x}\ge0\\\sqrt{x}\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne9\\x\ge0\\x\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne9\\x>0\end{cases}}}\)
\(A=\left(\frac{x+3}{x-9}+\frac{1}{\sqrt{x}+3}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\)
\(\Leftrightarrow A=\left(\frac{x+3}{x-9}+\frac{\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right).\frac{\sqrt{x}-3}{\sqrt{x}}\)
\(\Leftrightarrow A=\left(\frac{x+3}{x-9}+\frac{\sqrt{x}-3}{x-9}\right).\frac{\sqrt{x}-3}{\sqrt{x}}\)
\(\Leftrightarrow A=\frac{x+\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}}\)
\(\Leftrightarrow A=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+3}.\frac{1}{\sqrt{x}}=\frac{\sqrt{x}+1}{\sqrt{x}+3}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{x-9}\)
b) \(x=\sqrt{6+4\sqrt{2}}-\sqrt{3+2\sqrt{2}}\)
\(\Leftrightarrow x=\sqrt{4+4\sqrt{2}+2}-\sqrt{2+2\sqrt{2}+1}\)
\(\Leftrightarrow x=\sqrt{\left(2+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}+1\right)^2}\)
\(\Leftrightarrow x=\left|2+\sqrt{2}\right|-\left|\sqrt{2}+1\right|\)
\(\Leftrightarrow x=2+\sqrt{2}-\sqrt{2}-1=1\left(TM\right)\)
Vậy với x= 1 thì giá trị của biểu thức \(A=\frac{\left(1+1\right)\left(1-3\right)}{1-9}=\frac{2.\left(-2\right)}{-8}=\frac{-4}{-8}=\frac{1}{2}\)
c)
Ta có :
\(\frac{x-9}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+3}{\sqrt{x}+1}=1+\frac{2}{\sqrt{x}+1}\)
+) \(\frac{1}{A}\)nguyên
\(\Leftrightarrow1+\frac{2}{\sqrt{x}+1}\)nguyên
\(\Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)\)
\(\Leftrightarrow x=1\)
Vậy ..............
Bài 1:
1. \(\sqrt{a}\)có nghĩa <=> \(a\ge0\)
2. a) \(\sqrt{2x+6}\)có nghĩa <=> \(2x+6\ge0\)
\(\Leftrightarrow2x\ge-6\)
\(x\ge-3\)
b)\(\sqrt{\frac{-2}{2x-3}}\) có nghĩa \(\Leftrightarrow\frac{-2}{2x-3}\ge0\)
có -2 < 0
\(\Leftrightarrow\hept{\begin{cases}2x-3\ne0\\2x-3\le0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x\ne3\\2x\le3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne\frac{3}{2}\\x\le\frac{3}{2}\end{cases}}\)
\(\Rightarrow x< \frac{3}{2}\)
Bài 4 :
\(P=\left(\frac{\sqrt{x}}{\left(\sqrt{x}-1\right).\sqrt{x}}-\frac{\sqrt{x}-1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right):\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\right)\)
\(\Leftrightarrow\left(\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right):\left(\frac{\left(x-1\right)-\left(x-4\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}\right)\)
\(\Leftrightarrow\left(\frac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right):\left(\frac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)
\(\Leftrightarrow\left(\frac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right).\left(\frac{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}{3}\right)\)
\(\Leftrightarrow\frac{\sqrt{x}-2}{3\sqrt{x}}\) \(\left(ĐKXĐ:x>0;x\ne4;x\ne1\right)\)
b) \(P=\frac{1}{4}\)
\(\Leftrightarrow\frac{\sqrt{x}-2}{3\sqrt{x}}=\frac{1}{4}\)
\(\Leftrightarrow4\sqrt{x}-8=3\sqrt{x}\)
\(\Leftrightarrow4\sqrt{x}-3\sqrt{x}=8\)
\(\Leftrightarrow\sqrt{x}=8\)
\(\Leftrightarrow x=64\left(TMĐXĐ\right)\)
Vậy khi \(P=\frac{1}{4}\) thì x=64
a/ \(P=\left[\frac{1}{\sqrt{x}+1}-\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}\left(x-1\right)+x-1}\right]:\left[\frac{1}{\sqrt{x}-1}-\frac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\)
\(=\left[\frac{1}{\sqrt{x}+1}-\frac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]:\left[\frac{\sqrt{x}+1-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\)
\(=\left[\frac{1}{\sqrt{x}+1}-\frac{2}{\left(\sqrt{x}+1\right)^2}\right]:\left[\frac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\)
\(=\frac{\sqrt{x}+1-2}{\left(\sqrt{x}+1\right)^2}.\left(\sqrt{x}+1\right)=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
b/ Ta có: \(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}=1-\frac{2}{\sqrt{x}+1}\)
Để \(P\in Z\) thì \(\left(\sqrt{x}+1\right)\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
+ Với \(\sqrt{x}+1=1\Rightarrow\sqrt{x}=0\Rightarrow x=0\)
+ Với \(\sqrt{x}+1=-1\Rightarrow\sqrt{x}=-2\left(vn\right)\)
+ Với \(\sqrt{x}+1=2\Rightarrow\sqrt{x}=1\Rightarrow x=1\)(loại)
+ Với \(\sqrt{x}+1=-2\Rightarrow\sqrt{x}=-3\left(vn\right)\)
Vậy x = 0 thì P nguyên
a) \(P=\left(\frac{1}{\sqrt{x}+1}-\frac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2}{x-1}\right)\)
\(=\frac{x-1-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(x-1\right)}:\frac{\sqrt{x}+1-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{\left(x-1\right)\left(\sqrt{x}+1\right)}.\frac{x-1}{\sqrt{x}-1}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
b) \(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\frac{2}{\sqrt{x}+1}\)
Để P nguyên thì \(\sqrt{x}+1\in\left\{1;2\right\}\Leftrightarrow x\in\left\{0\right\}\) (Vì x khác 1 - điều kiện)
c) \(\sqrt{x}+1\ge1\Leftrightarrow\frac{2}{\sqrt{x}+1}\le\frac{1}{2}\Leftrightarrow1-\frac{2}{\sqrt{x}+1}\ge\frac{1}{2}\)
\(\Rightarrow P\ge\frac{1}{2}\). Dấu đẳng thức xảy ra khi x = 0
Vậy Min P = 1/2 <=> x = 0
a ) \(ĐKXĐ:x\ge0;x\ne1\)
= \(\frac{x+1+\sqrt{x}}{x+1}:\left[\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right]-1\)
\(=\frac{x+1+\sqrt{x}}{x+1}:\frac{x+1-2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}-1\)
\(=\frac{x+1+\sqrt{x}}{x+1}:\frac{\left(\sqrt{x}-1\right)^2}{\left(x+1\right)\left(\sqrt{x}-1\right)}-1\)
\(=\frac{\left(x+1+\sqrt{x}\right)\left(x+1\right)\left(\sqrt{x}-1\right)}{\left(x+1\right)\left(\sqrt{x}-1\right)^2}-1\)
\(=\frac{x+1+\sqrt{x}}{\sqrt{x}-1}-1=\frac{x+2}{\sqrt{x}-1}\)
B ) Ta có :
\(Q=P-\sqrt{x}\)
\(=\frac{\sqrt{x}+2}{\sqrt{x}-1}-\sqrt{x}\)
\(=\frac{\sqrt{x}+2}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)+3}{\sqrt{x}-1}=1+\frac{3}{\sqrt{x}-1}\)
Đế Q nhận giá trị nguyên thì \(1+\frac{3}{\sqrt{x}-1}\in Z\)
\(\Leftrightarrow\frac{3}{\sqrt{x}-1}\in Z\left(vì1\in Z\right)\)
\(\Leftrightarrow\sqrt{x}-1\inƯ\left(3\right)\)
Ta có bảng sau :
\(\sqrt{x}-1\) | 3 | -3 | 1 | -1 |
\(\sqrt{x}\) | 4 | -2 | 2 | 0 |
\(x\) | 16(t/m) | 4(t/m) | 0(t/m) |
Vậy để biểu thức \(Q=P-\sqrt{x}\) nhận giá trị nguyên thì \(x\in\left\{16;4;0\right\}\)