Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=\(\sqrt{9+2.3\sqrt{6}+6}+\sqrt{9+2.3.2\sqrt{6}+24}=\sqrt{\left(3+\sqrt{6}\right)^2}+\sqrt{\left(3+2\sqrt{6}\right)^2}\)=\(=3+\sqrt{6}+2+2\sqrt{6}=5+3\sqrt{6}\)
a, \(\frac{1}{\left(\sqrt{3}+\sqrt{2}\right)^2}\) +\(\frac{1}{\left(\sqrt{3}-\sqrt{2}\right)^2}\) =\(\frac{\left(\sqrt{3}+\sqrt{2}\right)^2+\left(\sqrt{3}-\sqrt{2}\right)^2}{\left(\sqrt{3}+\sqrt{2}\right)^2\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\frac{10}{1}=10\)
mấy câu còn lại bạn tự làm nốt nhé mk ban rồi
a) \(\frac{3}{\sqrt{5}}=\frac{3\sqrt{5}}{\sqrt{5}.\sqrt{5}}=\frac{3\sqrt{5}}{5}\)
\(\frac{2\sqrt{3}}{\sqrt{2}}=\frac{2\sqrt{3}.\sqrt{2}}{\sqrt{2}.\sqrt{2}}=\frac{2\sqrt{6}}{2}=\sqrt{6}\)
\(\frac{a}{\sqrt{b}}=\frac{a\sqrt{b}}{\sqrt{b}.\sqrt{b}}=\frac{a\sqrt{b}}{b}\)
\(\frac{x+1}{\sqrt{x^2-1}}=\frac{\left(x+1\right)\left(\sqrt{x^2-1}\right)}{\left(\sqrt{x^2-1}\right)\left(\sqrt{x^2-1}\right)}\) = \(\frac{\left(\sqrt{x^2-1}\right)\left(x+1\right)}{x^2-1}\)
B=\(\frac{6-6\sqrt{3}}{1-\sqrt{3}}+\frac{3\sqrt{3}+3}{\sqrt{3}+1}=\frac{6\left(1-\sqrt{3}\right)}{1-\sqrt{3}}+\frac{3\left(\sqrt{3}+1\right)}{\sqrt{3}+1}=6+3=9\)
C=\(\frac{3+\sqrt{3}}{\sqrt{3}}+\frac{\sqrt{6}-\sqrt{3}}{1-\sqrt{2}}=\frac{3\left(1+\sqrt{3}\right)}{\sqrt{3}}+\frac{\sqrt{3}\left(\sqrt{2}-1\right)}{1-\sqrt{2}}=\sqrt{3}+1-\sqrt{3}=1\)
D=\(\frac{\sqrt{10}-\sqrt{2}}{\sqrt{5}-1}+\frac{2-\sqrt{2}}{\sqrt{2}-1}=\frac{\sqrt{2}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}+\frac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}=\sqrt{2}+\sqrt{2}=2\sqrt{2}\)
E=\(\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\frac{1}{2-\sqrt{3}}=\frac{\sqrt{3}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}+\frac{1}{2-\sqrt{3}}=\sqrt{3}+\frac{1}{2-\sqrt{3}}=\frac{2\sqrt{3}-1}{2-\sqrt{3}}\)
a) \(\sqrt{17}-4\) b) \(\sqrt{3}\) c) \(\frac{\sqrt{2}}{2}\) d)\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) e) \(x-\sqrt{5}\)
f) \(4+2\sqrt{3}\) g) \(3+2\sqrt{2}\) h) \(x+\sqrt{x}+1\) i) \(\frac{3\sqrt{5}-\sqrt{15}}{10}\)
k) \(\sqrt{5}+\sqrt{6}\) i) 5 h) 0 l) \(\sqrt{5}+\sqrt{3}\) m) \(\frac{20\sqrt{3}}{3}\) d) 0
Bài rút gọn
\(\sqrt{\left(x-1\right)^2}-x=\left|x-1\right|-x\)
\(=\left(x-1\right)-x=x-1-x=-1\left(x>1\right)\)
Bài gpt:
\(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}=0\)
Đk:\(-1\le x\le3\)
\(pt\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{\left(x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-2}+\sqrt{x-3}\right)=0\)
Dễ thấy:\(\sqrt{x-2}+\sqrt{x-3}=0\) vô nghiệm
Nên \(\sqrt{x-1}=0\Rightarrow x-1=0\Rightarrow x=1\)
a/ \(\sqrt{5+\sqrt{24}}-\sqrt{2}=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{2}=\left|\sqrt{3}+\sqrt{2}\right|-\sqrt{2}=\sqrt{3}+\sqrt{2}-\sqrt{2}=\sqrt{3}\)
b/ \(\frac{3-2\sqrt{3}}{\sqrt{3}-2}=\frac{\sqrt{3}\left(\sqrt{3}-2\right)}{\sqrt{3}-2}=\sqrt{3}\)
c/ \(\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}=\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}=-\sqrt{5}\)
d/ \(\frac{1}{1-\sqrt{2}}-\frac{1}{1+\sqrt{2}}=\frac{1+\sqrt{2}-1+\sqrt{2}}{\left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right)}=\frac{2\sqrt{2}}{1-2}=-2\sqrt{2}\)
\(\frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}+1}\)
= \(\frac{\sqrt{3}.\left(\sqrt{1+\sqrt{3}}+1\right)}{\left(\sqrt{\sqrt{3}+1}-1\right)\left(\sqrt{\sqrt{3}+1}+1\right)}-\frac{\sqrt{3}.\left(\sqrt{1+\sqrt{3}}-1\right)}{\left(\sqrt{\sqrt{3}+1}-1\right)\left(\sqrt{\sqrt{3}+1}-1\right)}\)
= \(\frac{\sqrt{3}.\left(\sqrt{1+\sqrt{3}}+1\right)-\sqrt{3}.\left(\sqrt{1+\sqrt{3}}-1\right)}{\left(\sqrt{1+\sqrt{3}}+1\right)\left(\sqrt{1+\sqrt{3}}-1\right)}\)
= \(\frac{\sqrt{3}.\left(\sqrt{1+\sqrt{3}}+1\right)-\sqrt{3}.\left(\sqrt{1+\sqrt{3}}-1\right)}{\sqrt{3}}\)
\(=\frac{2\sqrt{3}}{\sqrt{3}}\)
= 2