Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\sqrt{2-\sqrt{3}}.\left(\sqrt{6}+\sqrt{2}\right)\)
\(=\sqrt{\frac{4-2\sqrt{3}}{2}}.\left[\sqrt{2}.\left(\sqrt{3}+\sqrt{1}\right)\right]\)
\(=\sqrt{\frac{\left(\sqrt{3}-1\right)^2}{2}}.\sqrt{2}.\left(\sqrt{3}+1\right)\)
\(=\frac{\sqrt{3}-1}{\sqrt{2}}.\sqrt{2}\left(\sqrt{3}+1\right)=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=3-1=2\)
\(D=\frac{8+2\sqrt{2}}{3-\sqrt{2}}-\frac{2+3\sqrt{2}}{\sqrt{2}}+\frac{\sqrt{2}}{1-\sqrt{2}}\)
\(=\frac{\left(8+2\sqrt{2}\right).\left(3+\sqrt{2}\right)}{9-2}-\frac{\sqrt{2}.\left(2+3\sqrt{2}\right)}{2}+\frac{\sqrt{2}.\left(1+\sqrt{2}\right)}{1-2}\)
\(=\frac{24+14\sqrt{2}+4}{7}-\frac{2\sqrt{2}+6}{2}-\frac{\sqrt{2}+2}{1}\)
\(=\frac{28+14\sqrt{2}}{7}-\sqrt{2}-3-\sqrt{2}-2\)
\(=4+2\sqrt{2}-2\sqrt{2}-5\)
\(=-1\)
\(A=\frac{1}{\sqrt{11-2\sqrt{30}}}-\frac{3}{\sqrt{7-2\sqrt{10}}}+\frac{4}{\sqrt{8+4\sqrt{3}}}\)
\(=\frac{1}{\sqrt{6-2.\sqrt{6}.\sqrt{5}+5}}-\frac{3}{\sqrt{5-2.\sqrt{5}.\sqrt{2}+2}}+\frac{2}{\sqrt{4+2\sqrt{3}}}\)
\(=\frac{1}{\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}}-\frac{3}{\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}}+\frac{2}{\sqrt{\left(\sqrt{3}+1\right)^2}}\)
\(=\frac{1}{\sqrt{6}-\sqrt{5}}-\frac{3}{\sqrt{5}-\sqrt{2}}+\frac{2}{\sqrt{3}+1}\)
\(=\frac{6-5}{\sqrt{6}-\sqrt{5}}-\frac{5-2}{\sqrt{5}-\sqrt{2}}+\frac{3-1}{\sqrt{3}+1}\)
\(=\frac{\left(\sqrt{6}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{5}\right)}{\sqrt{6}-\sqrt{5}}-\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}-\sqrt{2}}+\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{\sqrt{3}+1}\)
\(=\sqrt{6}+\sqrt{5}-\sqrt{5}+\sqrt{2}+\sqrt{3}+1=\sqrt{6}+\sqrt{2}+\sqrt{3}+1\)
\(=\sqrt{2}\left(\sqrt{3}+1\right)+\sqrt{3}+1=\left(\sqrt{3}+1\right)\left(\sqrt{2}+1\right)\)
\(b,\frac{2+\sqrt{3}}{1-\sqrt{4-2\sqrt{3}}}+\frac{2-\sqrt{3}}{1+\sqrt{4+2\sqrt{3}}}\)
\(=\frac{2+\sqrt{3}}{1-\sqrt{3-2\sqrt{3}+1}}+\frac{2-\sqrt{3}}{1+\sqrt{3+2\sqrt{3}+1}}\)
\(=\frac{2+\sqrt{3}}{1-\sqrt{\left(\sqrt{3}-1\right)^2}}+\frac{2-\sqrt{3}}{1+\sqrt{\left(\sqrt{3}+1\right)^2}}\)
\(=\frac{2+\sqrt{3}}{1-\left(\sqrt{3}-1\right)}+\frac{2-\sqrt{3}}{1+\sqrt{3}+1}\)
\(=\frac{2+\sqrt{3}}{2-\sqrt{3}}+\frac{2-\sqrt{3}}{2+\sqrt{3}}\)
\(=\frac{\left(2+\sqrt{3}\right)^2}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+\frac{\left(2-\sqrt{3}\right)^2}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)
\(=\frac{4+4\sqrt{3}+3+4-4\sqrt{3}+3}{4-3}\)
\(=14\)
\(a,\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+4+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+2}\)
\(=\frac{\sqrt{2}+\sqrt{3}+2}{\sqrt{2}+\sqrt{3}+2}+\frac{\sqrt{2}.\sqrt{2}+\sqrt{2}.\sqrt{3}+\sqrt{2}.2}{\sqrt{2}+\sqrt{3}+2}\)
\(=1+\frac{\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}{\sqrt{2}+\sqrt{3}+2}\)
\(=1+\sqrt{2}\)
\(C=\sqrt{4-2\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)
\(\Leftrightarrow C=\sqrt{3-2\sqrt{3}+1}-\sqrt{4+4\sqrt{3}+3}\)
\(\Leftrightarrow C=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(\Leftrightarrow C=\left|\sqrt{3}-1\right|-\left|2+\sqrt{3}\right|\)
\(\Leftrightarrow C=\sqrt{3}-1-2-\sqrt{3}\)
\(\Leftrightarrow C=-3\)
\(\frac{\sqrt{2-\sqrt{3}}}{2}:\left(\frac{\sqrt{2+\sqrt{3}}}{2}-\frac{2}{\sqrt{6}}+\frac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}\right).\)
\(=\frac{2\sqrt{2-\sqrt{3}}}{4}:\left(\frac{2\sqrt{2+\sqrt{3}}}{4}-\frac{2}{\sqrt{6}}+\frac{2\sqrt{2+\sqrt{3}}}{4\sqrt{3}}\right)\)
\(=\frac{\sqrt{4-2\sqrt{3}}}{4}:\left(\frac{\sqrt{4+2\sqrt{3}}}{4}-\frac{2}{\sqrt{6}}+\frac{\sqrt{4+2\sqrt{3}}}{4\sqrt{3}}\right)\)
\(=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{4}:\left[\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{4}-\frac{2}{\sqrt{6}}+\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{4\sqrt{3}}\right]\)
\(=\frac{\sqrt{3}-1}{4}:\left[\frac{\sqrt{6}\left(\sqrt{3}+1\right)}{4\sqrt{6}}-\frac{2.4}{4\sqrt{6}}+\frac{\sqrt{2}\left(\sqrt{3}+1\right)}{4\sqrt{6}}\right]\)
\(=\frac{\sqrt{3}-1}{4}:\frac{\sqrt{18}+\sqrt{6}-8+\sqrt{6}+\sqrt{2}}{4\sqrt{6}}\)
\(=\frac{\sqrt{3}-1}{4}.\frac{4\sqrt{6}}{\sqrt{2}\left(\sqrt{9}+2\sqrt{3}+1\right)}\)
\(=\frac{\sqrt{6}\left(\sqrt{3}-1\right)}{\sqrt{2}\left(\sqrt{3}+1\right)^2}=\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)^2}\)............
\(a.\sqrt{\frac{2-\sqrt{3}}{2}}+\frac{1-\sqrt{3}}{2}\)
\(=\sqrt{\frac{2\left(2-\sqrt{3}\right)}{4}}+\frac{1-\sqrt{3}}{2}\)
\(=\frac{\sqrt{4-2\sqrt{3}}}{2}+\frac{1-\sqrt{3}}{2}\)
\(=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{2}+\frac{1-\sqrt{3}}{2}\)
\(=\frac{\sqrt{3}-1+1-\sqrt{3}}{2}\) ( Vì \(\sqrt{3}-1>0\))
\(=0\)
b) \(\frac{1}{2+\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{6}}-\frac{2}{3+\sqrt{3}}\)
\(=\frac{2-\sqrt{3}}{2^2-\left(\sqrt{3}\right)^2}+\frac{\sqrt{3}}{3}-\frac{2\left(3-\sqrt{3}\right)}{3^2-\left(\sqrt{3}\right)^2}\)
\(=2-\sqrt{3}+\sqrt{3}-\frac{3-\sqrt{3}}{3}\)
\(=\frac{6-3+\sqrt{3}}{3}\)
\(=\frac{3+\sqrt{3}}{3}=\frac{\sqrt{3}+1}{\sqrt{3}}\)
c) \(\frac{3}{2+\sqrt{3}}+\frac{13}{4-\sqrt{3}}+\frac{6}{\sqrt{3}}\)
\(=\frac{2\left(2-\sqrt{3}\right)}{1}+\frac{13\left(1+\sqrt{3}\right)}{13}+2\sqrt{3}\)
\(=4-2\sqrt{3}+1-\sqrt{3}+2\sqrt{3}\)
\(=5-\sqrt{3}\)
bài này dễ bn, bn nhân vs biểu thức liên hợp ở mẫu là ra nka, mik ko bt viết mấy kí tự trên này nên ko hướng dẫn ra cụ thể đc
Gọi biểu thức là A
=>A*\(\sqrt{2}\)=\(\frac{\sqrt{6}}{2+\sqrt{4+2\sqrt{3}}}\)+\(\frac{\sqrt{6}}{2-\sqrt{4-2\sqrt{3}}}\)=\(\frac{\sqrt{6}}{2+\sqrt{\left(1+\sqrt{3}\right)^2}}\)+\(\frac{\sqrt{6}}{2+\sqrt{\left(\sqrt{3}-1\right)^2}}\)=\(\frac{\sqrt{6}}{2+1+\sqrt{3}}\)+\(\frac{\sqrt{6}}{2-\sqrt{3}+1}\)
=\(\frac{6\sqrt{6}}{4-\left(\sqrt{3}-1\right)^2}\)
=\(\frac{6\sqrt{6}}{-2\sqrt{3}}\)=-3\(\sqrt{2}\)
=>A=-3