Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\frac{n}{m+2017}=\frac{2017}{m+n}\Rightarrow n\left(m+n\right)=2017\left(m+2017\right)\Rightarrow n=2017\)
\(\frac{m}{n+2017}=\frac{2017}{m+n}\Rightarrow2017\left(n+2017\right)=m\left(m+n\right)\Rightarrow m=2017\)
\(\Rightarrow x=\frac{2017}{2017+2017}=\frac{2017}{2017+2017}=\frac{2017}{2017+2017}=\frac{1}{2}\)
Ta có: \(m+n\ne0.\)
\(\Rightarrow m+n+2017\ne2017.\)
Có:
\(x=\frac{m}{n+2017}=\frac{n}{m+2017}=\frac{2017}{m+n}\) và \(m+n+2017\ne2017.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(x=\frac{m}{n+2017}=\frac{n}{m+2017}=\frac{2017}{m+n}\)
\(\Rightarrow x=\frac{m+n+2017}{n+2017+m+2017+m+n}\)
\(\Rightarrow x=\frac{m+n+2017}{2m+2n+4034}\)
\(\Rightarrow x=\frac{m+n+2017}{2.\left(m+n+2017\right)}\)
\(\Rightarrow x=\frac{1}{2}.\)
Vậy \(x=\frac{1}{2}.\)
Chúc bạn học tốt!
Các bạn giúp ạ : @Vũ Minh Tuấn , @Băng Băng 2k6 , @Phạm Lan Hương , và cô @Akai Haruma
Ta có:
\(\frac{m}{n}+2017=\frac{n}{m}+2017\Rightarrow\frac{m}{n}=\frac{n}{m}\Rightarrow m^2=n^2\)
TH1: \(m=n\)
\(\Rightarrow x=1+2017=2018\)
TH2: \(-m=n\)
\(\Rightarrow x=-1+2017=2016\)
Vậy \(\left[{}\begin{matrix}x=2018\\x=2016\end{matrix}\right.\)
co m/n =2017/2017 => m/n=1 =>m=n => m+2017=n+2017
suy ra m+2017/n+2017 =1
ma m/n=1 => m/n=m+2017/n+2017
Ta có :
\(\frac{m}{n}=\frac{2017}{2017}\Leftrightarrow m=n\)
=> \(\frac{m+2017}{n+2017}=\frac{m+2017}{m+2017}=1=\frac{m}{n}\)
=> \(\frac{m}{n}=\frac{m+2017}{n+2017}\)(đpcm)