Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{72^2}{24^2}=\frac{3^2.24^2}{24^2}=3^2=9\)
\(\frac{\left(-7,5\right)^2}{2,5^2}=\frac{\left(7,5\right)^2}{\left(2,5\right)^2}=\frac{\left(2,5\right)^2.3^2}{\left(2,5\right)^2}=9\)
\(\frac{15^2}{27}=\frac{3^2.5^2}{27}=\frac{9.25}{27}=\frac{25}{3}\)
\(\frac{72^2}{24^2}=\left(\frac{72}{24}\right)^2=3^2=9\)
\(\frac{\left(-7,5\right)^3}{\left(2,5\right)^3}=\left(\frac{-7,5}{2,5}\right)^3=\left(-3\right)^3=-27\)
\(\frac{15^3}{27}=\frac{15^3}{3^3}=\left(\frac{15}{3}\right)^3=5^3=125\)
Chúc bạn hok tốt
\(A=\left|4x-3\right|+\left|5y+7,5\right|+10\)
Mà \(\left|4x-3\right|\ge0\)với mọi x
\(\left|5y+7,5\right|\ge0\)với mọi y
\(\Rightarrow A\)có GTNN là 10
Để A có GTNN thì :
\(4x-3=0\) \(5y+7,5=0\)
\(4x=3\) \(5y=-7,5\)
\(x=\frac{3}{4}\) \(y=-1,5\)
\(B=\frac{5,8}{\left|2,5-x\right|+5,8}\)
Mà \(\left|2,5-x\right|\ge0\)
\(\Rightarrow\)GTNN \(\left|2,5-x\right|+5,8=5,8\)
Để B có GTLN \(\Rightarrow2,5-x=0\)
\(\Rightarrow x=2,5\)
1) \(\frac{1}{3}x-\frac{2}{5}=\frac{1}{3}\)
⇒ \(\frac{1}{3}x=\frac{1}{3}+\frac{2}{5}\)
⇒ \(\frac{1}{3}x=\frac{11}{15}\)
⇒ \(x=\frac{11}{15}:\frac{1}{3}\)
⇒ \(x=\frac{11}{5}\)
Vậy \(x=\frac{11}{5}.\)
2) \(2,5:7,5=x:\frac{3}{5}\)
⇒ \(\frac{5}{2}:\frac{15}{2}=x:\frac{3}{5}\)
⇒ \(\frac{1}{3}=x:\frac{3}{5}\)
⇒ \(x=\frac{1}{3}.\frac{3}{5}\)
⇒ \(x=\frac{1}{5}\)
Vậy \(x=\frac{1}{5}.\)
4) \(\left|x\right|+\left|x+2\right|=0\)
Có: \(\left\{{}\begin{matrix}\left|x\right|\ge0\\\left|x+2\right|\ge0\end{matrix}\right.\forall x.\)
⇒ \(\left|x\right|+\left|x+2\right|=0\)
⇒ \(\left\{{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=0\\x=0-2\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vô lí vì \(x\) không thể nhận cùng lúc 2 giá trị khác nhau.
⇒ \(x\in\varnothing\)
Vậy không tồn tại giá trị nào của \(x\) thỏa mãn yêu cầu đề bài.
10) \(5-\left|1-2x\right|=3\)
⇒ \(\left|1-2x\right|=5-3\)
⇒ \(\left|1-2x\right|=2\)
⇒ \(\left[{}\begin{matrix}1-2x=2\\1-2x=-2\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}2x=1-2=-1\\2x=1+2=3\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=\left(-1\right):2\\x=3:2\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=-\frac{1}{2}\\x=\frac{3}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{-\frac{1}{2};\frac{3}{2}\right\}.\)
Chúc bạn học tốt!
9, \(13\frac{1}{3}:1\frac{1}{3}=26:\left(2x-1\right)\)
\(\frac{40}{3}:\frac{4}{3}=26:\left(2x-1\right)\)
\(10=26:\left(2x-1\right)\)
\(2x-1=26:10\)
\(2x-1=2,6\)
\(2x=2,6+1\)
\(2x=3,6\)
\(x=3,6:2\)
\(x=1,8\)
a)
\(7,5.\left(\frac{-2}{5}\right).\left(-2,5\right)\)
\(=7,5.\left[\left(\frac{-2}{5}\right).\left(-2,5\right)\right]\)
\(=7,5.1\)
\(=7,5\)
b)
\(\left(-50,5\right).8.\left(-0,25\right)\)
\(=\left(-50,5\right).\left[8.\left(-0,25\right)\right]\)
\(=\left(-50,5\right).\left(-2\right)\)
\(=101\)
c)
\(\left(0,125\right).\left(-3,7\right).\left(-2\right)^3\)
\(=\left(0,125\right).\left(-3,7\right).\left(-8\right)\)
\(=\left[\left(-8\right).\left(0,125\right)\right].\left(-3,7\right)\)
\(=\left(-1\right).\left(-3,7\right)\)
\(=3,7\)
Chúc cậu học tốt !!!
\(A=\left(3\dfrac{1}{3}+2,5\right):\left(3\dfrac{1}{6}-4\dfrac{1}{5}\right)-\dfrac{11}{31}\\ =\left(\dfrac{10}{3}+\dfrac{5}{2}\right):\left(\dfrac{19}{6}-\dfrac{21}{5}\right)-\dfrac{31}{11}\\ =\left(\dfrac{30}{6}+\dfrac{15}{6}\right):\left(\dfrac{95}{30}-\dfrac{126}{30}\right)-\dfrac{31}{11}\\ =\dfrac{45}{6}:\dfrac{-21}{30}-\dfrac{31}{11}\\ =\dfrac{15}{2}\times\dfrac{-10}{7}-\dfrac{31}{11}=-\dfrac{75}{7}-\dfrac{31}{11}=-\dfrac{825}{77}-\dfrac{217}{77}=\dfrac{-1042}{77}\)
\(B=\left(-6\right).10:\left[-0,25+\dfrac{1}{2}:\left(-2\right)\right]+1\dfrac{3}{4}\\ =-60:\left(\dfrac{-1}{4}+\dfrac{1}{2}.\dfrac{-1}{2}\right)+1\dfrac{3}{4}\\ =-60:\left(\dfrac{-1}{4}+\dfrac{-1}{4}\right)+1\dfrac{3}{4}\\ =-60:\left(\dfrac{-1}{2}\right)+1\dfrac{3}{4}=120+1\dfrac{3}{4}=121\dfrac{3}{4}\)
\(\frac{\left(-7,5\right)^3}{2,5^3}=\left(\frac{-7,5}{2,5}\right)^3\)
\(=\left(-3\right)^3\)
\(=-27\)
\(\frac{\left(-7,5\right)^3}{\left(2,5\right)^3}=\frac{-7,5\cdot\left(-7,5\right)\cdot\left(-7,5\right)}{2,5\cdot2,5\cdot2,5}=-3\cdot\left(-3\right)\cdot\left(-3\right)=\left(-3\right)^3=-27\)