\(\frac{Ia+bI}{1+Ia+bI}\)<=\(\frac{IaI+IbI}{1+IaI+IbI}\) ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2017

\(\forall a,b\in R\)  ta luôn có  \(\left|a+b\right|\le\left|a\right|+\left|b\right|\)

Ta biến đổi tương đương biểu thức đã cho

\(\frac{\left|a+b\right|}{1+\left|a+b\right|}\le\frac{\left|a\right|+\left|b\right|}{1+\left|a\right|+\left|b\right|}\)  (*)

\(\Leftrightarrow\left|a+b\right|.\left(1+\left|a\right|+\left|b\right|\right)-\left(\left|a\right|+\left|b\right|\right).\left(1+\left|a+b\right|\right)\le0\)

\(\Leftrightarrow\left|a+b\right|+\left|a+b\right|.\left(\left|a\right|+\left|b\right|\right)-\left(\left|a\right|+\left|b\right|\right)-\left|a+b\right|.\left(\left|a\right|+\left|b\right|\right)\le0\)

\(\Leftrightarrow\left|a+b\right|-\left(\left|a\right|+\left|b\right|\right)\le0\)

\(\Leftrightarrow\left|a+b\right|\le\left|a\right|+\left|b\right|\)  (luôn đúng)

Do đó (*) được chứng minh

Đẳng thức xảy ra khi và chỉ khi a, b cùng dấu.

25 tháng 6 2017

Em mới học lớp 7 nên cũng ko hiểu kĩ lắm,em nghĩ thế này:

+)Nếu a và b cùng dấu,=>|a+b|=|a|+|b|(vì cách cộng 2 số cùng dấu là cộng 2 giá trị tuyệt đối rồi đặt dấu chung.

Nhưng nếu khác dấu thì em thấy ko hợp lí lắm.

Em lấy ví dụ minh họ như sau:

a=-2;b=3.

=>|a|+|b|=2+3=5.

Mà |a+b|=|-2+3|=|1|=1.

=>Điều cần chứng minh là ko hoàn toàn đúng.

Vậy bài toán ko thể chứng minh.

E trình bày hơi lủng củng,thông cảm cho e vì e dốt văn lắm!

26 tháng 6 2017

Hihi sorry, mk ghi nhầm đề

9 tháng 9 2015

Bài đẹp quá!

Ta kí hiệu \(S_a,S_b,S_c\) lần lượt là diện tích của các tam giác \(\Delta IBC,\Delta ICA,\Delta IAB\). Từ công thức tỉ số diện tích ta suy ra \(\frac{IA}{IM}=\frac{S_b+S_c}{S_a},\) tương tự cho 2 tỉ số còn lại. Thành thử ta cần chứng minh \(\sqrt{\frac{S_b+S_c}{S_a}}+\sqrt{\frac{S_c+S_a}{S_b}}+\sqrt{\frac{S_a+S_b}{S_a}}\ge3\sqrt{2}\)

Có nhiều cách xử lý cậu này: ví dụ theo bất đẳn thức Cauchy  \(\sqrt{\frac{S_b+S_c}{2S_a}}\ge\frac{2\left(S_b+S_c\right)}{2S_a+S_b+S_c}=\frac{2\left(S_b+S_c\right)^2}{2S_a\left(S_b+S_c\right)+\left(S_b+S_c\right)^2}\)

Tương tự cho 2 bất đẳng thức nữa rồi cộng lại ta sẽ được

\(\sqrt{\frac{S_b+S_c}{2S_a}}+\sqrt{\frac{S_c+S_a}{2S_b}}+\sqrt{\frac{S_a+S_b}{2S_a}}\ge\frac{8\left(S_a+S_b+S_c\right)^2}{4\left(S_aS_b+S_bS_c+S_cS_a\right)+2\left(S_a^2+S_b^2+S_c^2+S_aS_b+S_bS_c+S_cS_a\right)}\)

Từ bất đẳng thức quen thuộc \(S_a^2+S_b^2+S_c^2\ge S_aS_b+S_bS_c+S_cS_a\) ta suy ra

\(\frac{8\left(S_a+S_b+S_c\right)^2}{4\left(S_aS_b+S_bS_c+S_cS_a\right)+2\left(S_a^2+S_b^2+S_c^2+S_aS_b+S_bS_c+S_cS_a\right)}\ge3\)

Do đó ta có ĐPCM.

15 tháng 8 2019

Trần Thanh Phương, svtkvtm, tth, Lê Thảo, @Akai Haruma,

@Nguyễn Việt Lâm

15 tháng 8 2019

bach nhac lam bao giờ bạn cần ?