\(\frac{a}{x}=\frac{b}{y}\)Chứng minh rằng nếu (a^2+b^2)(x^2+y^2)=(ax+by)^2 thì 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow x=ak,y=bk,z=ck\)

Ta có: \(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(a^2k^2+b^2k^2+c^2k^2\right)\left(a^2+b^2+c^2\right)=k^2\left(a^2+b^2+c^2\right)^2\) (1)

\(\left(ax+by+cz\right)^2=\left(a.ak+b.bk+c.ck\right)^2=\left(a^2k+b^2k+c^2k\right)^2=\left[k\left(a^2+b^2+c^2\right)\right]^2=k^2\left(a^2+b^2+c^2\right)^2\)(2)

Từ (1),(2) => đpcm

1 tháng 8 2018

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow x=ka,y=kb,z=kc\)

Ta có VT=\(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(k^2a^2+k^2b^2+k^2c^2\right)\left(a^2+b^2+c^2\right)\)=

=\(k^2\left(a^2+b^2+c^2\right)^2\)

Mà \(\left(ax+by+cz\right)^2=\left(a^2k+b^2k+c^2k\right)^2=k^2\left(a^2+b^2+c^2\right)^2\)

=> VT=VP

=> ĐPCM 

3 tháng 10 2016

\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)

\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2axby+b^2y^2\)

\(\Leftrightarrow a^2y^2-2axby+b^2x^2=0\)

\(\Leftrightarrow\left(ay-bx\right)^2=0\Leftrightarrow ay-bx=0\Leftrightarrow ay=bx\Leftrightarrow\frac{a}{x}=\frac{b}{y}\)

3 tháng 10 2016

Cảm ơn bạn nhiều

15 tháng 9 2020

\(\text{Áp dụng BĐT Bunhia... cho 2 bộ số (a;b;c) và (x;y;z), ta có: }\)

\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\ge\left(ax+by+cz\right)^2\)

\(\text{Dấu = xảy ra }\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\text{(đpcm)}\)

Chả biết có đúng không '-'

15 tháng 9 2020

Sửa lại đề:\(\left(ax+by+cz\right)\rightarrow\left(ax+by+cz\right)^2\)

Ta có:\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)

\(\Rightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)\(=a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)

\(\Rightarrow a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2-2aybx-2bzcy-2azcx=0\)

\(\Rightarrow\left(ay-bx\right)^2+\left(bz-cy\right)^2+\left(az-cx\right)^2=0\)

\(\left(ay-bx\right)^2\ge0\)

   \(\left(bz-cy\right)^2\ge0\)

    \(\left(az-cx\right)^2\ge0\)

Suy ra:\(\left(ay-bx\right)^2+\left(bz-cy\right)^2+\left(az-cx\right)^2\ge0\)

\(\left(ay-bx\right)^2+\left(bz-cy\right)^2+\left(az-cx\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}ay-bx=0\\bz-cy=0\\az-cx=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}ay=bx\\bz=cy\\az=cx\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{a}{x}=\frac{b}{y}\\\frac{b}{y}=\frac{c}{z}\\\frac{a}{x}=\frac{c}{z}\end{cases}}\)\(\left(x,y,z\ne0\right)\)

\(\Rightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\left(đpcm\right)\)

Vậy...

Linz

3 tháng 3 2020

Violympic toán 8

3 tháng 3 2020

Đề thiếu???

13 tháng 8 2017

Câu hỏi của Momozono Nanami - Toán lớp 8 - Học toán với OnlineMath

1 tháng 9 2017

ta có x+y+z=0 =>x^2=(y+z)^2 
y^2=(x+z)^2 
z^2=(x+y)^2 
do đó ax^2+by^2+cz^2 
=a(y+z)^2+b(x+z)^2+c(x+y)^2 
=a(y^2+2yz+z^2)+b(x^2+2xz+z^2) 
+c(x^2+2xy+y^2) 
=x^2(b+c)+y^2(a+c)+z^2(a+b) 
+2(ayz+bxz+cxy) (1) 
thay b+c=-a ,a+c=-b , a+b=-c do a+b+c=0 
và ayz+bxz+cxy=0 do a/x+b/y+c/z=0 vào (1) ta được 
ax^2+by^2+cz^2 = -(ax^2+by^2+cz^2) 
=> ax^2+by^2+cz^2=0

28 tháng 5 2017

a) \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)

\(\Leftrightarrow a^2x^2+b^2x^2+a^2y^2+b^2y^2=a^2x^2+b^2y^2+2abxy\)

\(\Leftrightarrow b^2x^2-2abxy+a^2y^2=0\)

\(\Leftrightarrow\left(bx\right)^2-2\cdot bx\cdot ay+\left(ay\right)^2=0\)

\(\Leftrightarrow\left(bx-ay\right)^2=0\Rightarrow bx=ay\Rightarrow\left(\frac{a}{x}=\frac{b}{y}\right)\)

b) \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)

\(\Leftrightarrow a^2x^2+b^2x^2+c^2x^2+a^2y^2+b^2y^2+c^2y^2+a^2z^2+b^2z^2+c^2z^2\)

\(=a^2x^2+b^2y^2+c^2z^2+2abxy+2bcyz+2acxz\)

\(\Leftrightarrow b^2x^2-2bxay+a^2y^2+b^2z^2-2bzcy+c^2y^2+a^2z^2-2azcx+c^2x^2=0\)

\(\Leftrightarrow\left(bx-ay\right)^2+\left(bz-cy\right)^2+\left(az-cx\right)^2=0\)

\(\hept{\begin{cases}bx=ay\\bz=cy\\az=cx\end{cases}\Rightarrow\hept{\begin{cases}\frac{a}{x}=\frac{b}{y}\\\frac{b}{y}=\frac{c}{z}\\\frac{a}{x}=\frac{c}{z}\end{cases}}\Rightarrow\left(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\right)}\)

c) \(\left(a+b\right)^2=2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+b^2+2ab=2a^2+2b^2\)

\(\Leftrightarrow a^2-2ab+b^2=0\)

\(\Leftrightarrow\left(a-b\right)^2=0\Leftrightarrow a=b\)