\(\frac{AC}{\sin27}=\frac{CD}{sin4}\Rightarrow AC=CD.\frac{sin27}{sin4}=4.\frac{sin27}{sin4}=26....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\overrightarrow{AB}=\left(\frac{9}{4};-3\right)\Rightarrow AB=\frac{15}{4}\) \(\overrightarrow{AC}=\left(4;-3\right)\Rightarrow AC=5\) Gọi AD là đường phân giác trong góc A với D thuộc BC. Gọi toạ độ của điểm D là D(x;y) \(\overrightarrow{DC}=\left(2-x;-y\right);\overrightarrow{DB}=\left(\frac{1}{4}-x;-y\right)\) Theo tính chất đường phân giác ta...
Đọc tiếp

\(\overrightarrow{AB}=\left(\frac{9}{4};-3\right)\Rightarrow AB=\frac{15}{4}\)

\(\overrightarrow{AC}=\left(4;-3\right)\Rightarrow AC=5\)

Gọi AD là đường phân giác trong góc A với D thuộc BC. Gọi toạ độ của điểm D là D(x;y)

\(\overrightarrow{DC}=\left(2-x;-y\right);\overrightarrow{DB}=\left(\frac{1}{4}-x;-y\right)\)

Theo tính chất đường phân giác ta có:

\(\frac{DB}{DC}=\frac{AB}{AC}\)

\(\frac{\overrightarrow{DB}}{\overrightarrow{DC}}=-\frac{AB}{AC}\)

\(\frac{\overrightarrow{DB}}{\overrightarrow{DC}}=-\frac{3}{4}\)

\(\Rightarrow\overrightarrow{DB}=-\frac{3}{4}\overrightarrow{DC}\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{4}-x=-\frac{3}{4}\left(2-x\right)\\-y=-\frac{3}{4}\left(-y\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

\(\Rightarrow D\left(1;0\right)\)

Gọi BJ là đường phân giác trong góc B với J thược AD. Gọi toạ độ điểm J là J(x;y).

\(\overrightarrow{BA}=\left(-\frac{9}{4};3\right)\Rightarrow AB=\frac{15}{4}\)

\(\overrightarrow{BD}=\left(\frac{3}{4};0\right)\Rightarrow BD=\frac{3}{4}\)

Theo tính chất đường phân giác góc B ta có:

\(\frac{JA}{JD}=\frac{BA}{BD}\)

\(\Rightarrow\)\(\frac{\overrightarrow{JA}}{\overrightarrow{JD}}=-5\)

\(\Rightarrow\overrightarrow{JA}=-5\overrightarrow{JD}\)

\(\Rightarrow\left\{{}\begin{matrix}-2-x=-5\left(1-x\right)\\3-y=-5\left(-y\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{2}\end{matrix}\right.\)

\(J\left(\frac{1}{2};\frac{1}{2}\right)\)

Vì J là giao điểm của hai đường phân giác trong góc A và góc B nên J là tâm đường tròn nội tiếp tam giác ABC

0
NV
2 tháng 1 2020

\(sina=\sqrt{1-cos^2a}=\frac{\sqrt{5}}{3}\)

\(cos2a=cos^2a-sin^2a=\frac{4}{9}-\frac{5}{9}=-\frac{1}{9}\)

\(sin4a=2sin2a.cos2a=4sina.cosa.cos2a=4.\frac{\sqrt{5}}{3}.\frac{2}{3}.\left(-\frac{1}{9}\right)=-\frac{8\sqrt{5}}{81}\)

NV
25 tháng 4 2019

Nhân cả tử và mẫu của phân số chứa tan với \(sina.cosa\)

\(A=\frac{sin^2x-cos^2x}{sin^2x+cos^2x}+cos2x=sin^2x-cos^2x+cos2x=-cos2x+cos2x=0\)

\(B=\frac{1+sin4a-cos4a}{1+sin4a+cos4a}=\frac{1+2sin2a.cos2a-\left(1-2sin^22a\right)}{1+2sin4a.cos4a+2cos^22a-1}\)

\(B=\frac{2sin2a\left(sin2a+cos2a\right)}{2cos2a\left(sin2a+cos2a\right)}=\frac{sin2a}{cos2a}=tan2a\)

\(C=\frac{3-4cos2a+2cos^22a-1}{3+4cos2a+2cos^22a-1}=\frac{2\left(cos^22a-2cos2a-1\right)}{2\left(cos^22a+2cos2a+1\right)}\)

\(C=\frac{\left(cos2a-1\right)^2}{\left(cos2a+1\right)^2}=\frac{\left(1-2sin^2a-1\right)^2}{\left(2cos^2a-1+1\right)^2}=\frac{sin^4a}{cos^4a}=tan^4a\)

\(D=\frac{sin^22a+4sin^4a-\left(2sina.cosa\right)^2}{4-4sin^2a-sin^22a}=\frac{sin^22a+4sin^4a-sin^22a}{4\left(1-sin^2a\right)-\left(2sina.cosa\right)^2}=\frac{4sin^4a}{4cos^2a-4sin^2a.cos^2a}\)

\(=\frac{sin^4a}{cos^2a\left(1-sin^2a\right)}=\frac{sin^4a}{cos^2a.cos^2a}=\frac{sin^4a}{cos^4a}=tan^4a\)

16 tháng 3 2020

Bạn hỏi hay trả lời vậy?

21 tháng 11 2019

Nguyễn Việt Lâm

21 tháng 11 2019

bổ sung đề

với f không giảm

tính f\(\left(\frac{1}{n}\right)\) với n∈\(\left\{1;2;3;....;20\right\}\)

26 tháng 4 2017

Giải bài 4 trang 155 SGK Đại Số 10 | Giải toán lớp 10

Giải bài 4 trang 155 SGK Đại Số 10 | Giải toán lớp 10