\(\frac{a}{b}=\frac{c}{d}\)

\(\frac{\left(a+b\right)^{2019}}{\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2019

Sửa đề chút:

-Cho tỉ lệ thức

-Yêu cầu CM tỉ lệ thức kia

22 tháng 12 2019

Đặt  \(\frac{a}{b}=\frac{c}{d}=k\)

 \(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

\(\frac{a^{2019}+c^{2019}}{b^{2019}+d^{2019}}=\frac{\left(bk\right)^{2019}+\left(dk\right)^{2019}}{b^{2019}+d^{2019}}=\frac{b^{2019}.k^{2019}+d^{2019}.k^{2019}}{b^{2019}+d^{2019}}=\frac{k^{2019}.\left(b^{2019}+d^{2019}\right)}{b^{2019}+d^{2019}}=k^{2019}\)(1)

\(\frac{\left(a+c\right)^{2019}}{\left(b+d\right)^{2019}}=\frac{\left(bk+dk\right)^{2019}}{\left(b+d\right)^{2019}}=\frac{[k.\left(b+d\right)]^{2019}}{\left(b+d\right)^{2019}}=\frac{k^{2019}.\left(b+d\right)^{2019}}{\left(b+d\right)^{2019}}=k^{2019}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{a^{2019}+c^{2019}}{b^{2019}+d^{2019}}=\frac{\left(a+c\right)^{2019}}{\left(b+d\right)^{2019}}\)

Mình viết sai đề đó nha

5 tháng 11 2019

                                                            Bài giải

* Từ \(\frac{a}{b}=\frac{c}{d}\text{ }\Rightarrow\text{ }\frac{a}{c}=\frac{b}{d}\text{ }\Rightarrow\text{ }\frac{a^{2019}}{c^{2019}}=\frac{b^{2019}}{d^{2019}}=\frac{a^{2019}+b^{2019}}{c^{2019}+d^{2019}}\text{ ( * ) }\)

* Từ \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\text{ }\Rightarrow\text{ }\frac{a^{2019}}{c^{2019}}=\frac{\left(a-b\right)^{2019}}{\left(c-d\right)^{2019}}\left(\text{**}\right)\)

* Từ \(\left(\text{*}\right),\left(\text{**}\right)\Rightarrow\text{ ĐPCM}\)

NV
29 tháng 10 2019

- Nếu \(a=c=0\Rightarrow\left(\frac{a-b}{c-d}\right)^{2019}=\left(\frac{b}{d}\right)^{2019}=\frac{b^{2019}}{d^{2019}}\)

\(\frac{2a^{2019}-b^{2019}}{2c^{2019}-d^{2019}}=\frac{-b^{2019}}{-d^{2019}}=\frac{b^{2019}}{d^{2019}}\Rightarrow\left(\frac{a-b}{c-d}\right)^{2019}=\frac{2a^{2019}-b^{2019}}{2c^{2019}-d^{2019}}\)

- Nếu \(a;c\ne0\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{2a^{2019}}{2c^{2019}}=\frac{a^{2019}}{c^{2019}}=\frac{b^{2019}}{d^{2019}}=\left(\frac{a-c}{b-d}\right)^{2019}=\frac{2a^{2019}-b^{2019}}{2c^{2019}-d^{2019}}\)

29 tháng 10 2019

Này Nguyễn Việt Lâm, mk thấy cái trường hợp a;c\(\ne\)0 nó cứ làm sao sao ấy.Bn thử kiểm tra lại xem

29 tháng 10 2019

Đề sai sai gì đó nhá xem lại dùm

7 tháng 3 2020

Đề có sai ko bạn sao lại c-d ?

7 tháng 3 2020

Sửa đề : Cần chứng minh \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)

Đặt :\(\frac{a}{2017}=\frac{b}{2018}=\frac{c}{2019}=k\)

\(\Rightarrow\hept{\begin{cases}a=2017k\\b=2018k\\c=2019k\end{cases}}\)

Khi đó :

\(4\left(a-b\right)\left(b-c\right)=4\left(2017k-2018k\right)\left(208k-2019k\right)\)

\(=4\cdot\left(-k\right)\cdot\left(-k\right)=4k^2\)

\(\left(c-a\right)^2=\left(2019k-2017k\right)^2=\left(2k\right)^2=4k^2\)

Do đó : \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\) (đpcm)

4 tháng 11 2018

Cứu mình với 9:00 sáng nay mình nộp bài rùikhocroi

17 tháng 8 2021

bạn ơi bạn có câu trả lời chưa, cho mik xin vs

 

29 tháng 10 2019

Đặt \(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}=k\)

\(\Rightarrow a=2018k\)\(b=2019k\)\(c=2020k\)

Ta có: \(4\left(a-b\right)\left(b-c\right)=4\left(2018k-2019k\right)\left(2019k-2020k\right)\)

                                                 \(=4.\left(-k\right).\left(-k\right)=4k^2=\left(2k\right)^2\)

Ta lại có: \(\left(a-c\right)^2=\left(2018k-2020k\right)^2=\left(-2k\right)^2=\left(2k\right)^2\)

Vậy \(4\left(a-b\right)\left(b-c\right)=\left(a-c\right)^2\)

18 tháng 8 2020

Đặt \(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}=k\Rightarrow\hept{\begin{cases}a=2018k\\b=2019k\\c=2020k\end{cases}}\)

Thế vị trí tương ứng ta được :

VT = 4( a - b )( b - c )

       = 4( 2018k - 2019k )( 2019k - 2020k )

       = 4(-k)(-k)

       = 4k2

VP = ( a - c )2 

       = ( 2018k - 2020k )2

       = ( -2k )2

       = 4k2

=> VT = VP

=> đpcm