\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=0 \)  cmr 
\(\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2015

nguyễn quốc khánh sai r.không đủ tính thuyết phuc chung mình như vậy cũng không thể x+y+z=0=>x=y=z d

28 tháng 3 2019

Ta có

\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

\(\Rightarrow\frac{a}{b-c}=\frac{b}{a-c}+\frac{c}{b-a}=\frac{b^2-ab+ac-c^2}{\left(a-c\right)\left(b-a\right)}\)

\(\Rightarrow\frac{a}{\left(b-c\right)^2}=\frac{b^2-ab+ac-c^2}{\left(a-c\right)\left(b-a\right)\left(b-c\right)}\)

Tương tự

\(\frac{b}{\left(c-a\right)^2}=\frac{c^2-bc+ab-a^2}{\left(a-c\right)\left(b-a\right)\left(b-c\right)}\)

\(\frac{c}{\left(a-b\right)^2}=\frac{a^2-ac+bc-b^2}{\left(a-c\right)\left(b-a\right)\left(b-c\right)}\)

\(\Rightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=\frac{b^2-ab+ac-c^2+c^2-bc+ab-a^2+a^2-ac+bc-b^2}{\left(a-c\right)\left(b-a\right)\left(a-b\right)}\)

=0 ( ĐPCM)

AH
Akai Haruma
Giáo viên
29 tháng 5 2020

Lời giải:

Nên bổ sung thêm điều kiện $a,b,c$ đôi một phân biệt. Đặt biểu thức cần chứng minh bằng $0$ là $P$

Ta có:

\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

\(\Rightarrow \left(\frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\right)\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)=0\)

\(\Leftrightarrow \frac{a}{(b-c)^2}+\frac{b}{(c-a)^2}+\frac{c}{(a-b)^2}+\frac{b}{(b-c)(c-a)}+\frac{c}{(b-c)(a-b)}+\frac{a}{(c-a)(b-c)}+\frac{c}{(c-a)(a-b)}+\frac{a}{(a-b)(b-c)}+\frac{b}{(a-b)(c-a)}=0\)

\(\Leftrightarrow P+\frac{b(a-b)+c(c-a)+a(a-b)+c(b-c)+a(c-a)+b(b-c)}{(a-b)(b-c)(c-a)}=0\)

\(\Leftrightarrow P+\frac{0}{(a-b)(b-c)(c-a)}=0\Rightarrow P=0\) (đpcm)

16 tháng 8 2017

Áp dụng bđt Cauchy Schwarz dưới dạng Engel ta có :

\(\frac{\left(a+b\right)^2}{c}+\frac{\left(c+b\right)^2}{a}+\frac{\left(a+c\right)^2}{b}\ge\frac{\left(a+b+c+b+c+a\right)^2}{a+b+c}\)

\(=\frac{\left(2a+2b+2c\right)^2}{a+b+c}=\frac{4\left(a+b+c\right)^2}{a+b+c}=4\left(a+b+c\right)\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)