\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)

\(\text{Tí...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2016

Theo t/c dãy tỉ số=nhau:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

=>a+b-c=c=>a+b=2c  (1)

b+c-a=a=>b+c=2a   (2)

c+a-b=b=>c+a=2b   (3)

thay (1);(2);(3) vào M ta đc;

\(M=\frac{2c.2a.2b}{a.b.c}=\frac{\left(2.2.2\right).\left(a.b.c\right)}{a.b.c}=2.2.2=8\)

Vậy M=8

26 tháng 10 2019

Từ  \(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)

\(\Rightarrow\frac{a+b-c}{c}+2=\frac{a-b+c}{b}+2=\frac{-a+b+c}{a}+2\)

\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)

Nếu a + b + c = 0

=> a + b = - c

=> b + c = - a

=> c + a = - b

Khi đó \(\frac{\left(a+b\right).\left(b+c\right).\left(c+a\right)}{abc}=\frac{-a.\left(-b\right).\left(-c\right)}{abc}=-\frac{abc}{abc}=-1\)

Nếu \(a+b+c\ne0\)

\(\Rightarrow\frac{1}{c}=\frac{1}{b}=\frac{1}{a}\)

\(\Rightarrow a=b=c\)

Khi đó \(\frac{\left(a+b\right).\left(b+c\right).\left(c+a\right)}{abc}=\frac{2a.2b.2c}{abc}=\frac{8.abc}{abc}=8\)

Vậy nếu a + b + c = 0 thì \(\frac{\left(a+b\right).\left(b+c\right).\left(c+a\right)}{abc}=-1\) 

nếu a + b + c \(\ne\)0 thì  \(\frac{\left(a+b\right).\left(b+c\right).\left(c+a\right)}{abc}=8\) 

13 tháng 10 2021

Áp dụng t/c dãy tỷ số bằng nhau có

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b-c+a-b+c-a+b+c}{c+b+a}=\)

\(=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\frac{a+b-c}{c}=1\Rightarrow a+b=2c\)

Tương tự có \(a+c=2b;b+c=2a\)

\(\Rightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{a.b.c}=\frac{2c.2a.2b}{a.b.c}=8\)

1 tháng 1 2019

\(Tacó\)

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b+a+c+b+c-a-b-c}{a+b+c}=1\)

\(\Rightarrow a+b=2c;b+c=2a;c+a=2b\)

\(\Leftrightarrow a=b=c\)

\(\Rightarrow\frac{\left(a+b\right)\left(a+c\right)\left(b+c\right)}{abc}=\frac{2c.2c.2c}{c^3}=8\)

\(Taco:\)

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b+a+c+b+c-a-b-c}{a+b+c}=1\)

\(\Rightarrow a+b=2c;b+c=2a;c+a=2b\)

\(\Leftrightarrow a=b=c\)

\(\Rightarrow\frac{\left(a+b\right)\left(a+c\right)\left(b+c\right)}{abc}=\frac{2c.2c.2c}{c^3}=8\)

Hk tốt,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

k nhé

15 tháng 1 2017

Đặt \(\frac{b+c-a}{c}=\frac{a+b+c}{b}=\frac{b-c+a}{a}=k\)

\(\Rightarrow\hept{\begin{cases}b+c-a=ck\\a+b+c=bk\\b-c+a=ak\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2b=k\left(a+c\right)\left(1\right)\\2c=k\left(b-a\right)\left(2\right)\\2b+2c=b\left(b+c\right)\Rightarrow k=2\end{cases}}\)

Thay k=2 vào (1) và (2) : 

\(\hept{\begin{cases}2b=2\left(a+c\right)\\2c=2\left(b-a\right)\end{cases}\Rightarrow\hept{\begin{cases}b=a+c\\c=b-a\Rightarrow a=b-c\end{cases}}}\)

Vậy \(\frac{\left(b-a\right)\left(c+b\right)\left(a+c\right)}{abc}=\frac{\left(b-a\right)\left(c+b\right)\left(a+c\right)}{\left(b-c\right)\left(a+c\right)\left(b-a\right)}=\frac{b+c}{b-c}\)

7 tháng 10 2021

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có dãy tỉ lệ thức trên bằng:

\(=\frac{\left(a+b-c\right)+\left(a-b+c\right)+\left(-a+b+c\right)}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\hept{\begin{cases}a+b-c=c\\a+c-b=b\\b+c-a=a\end{cases}\Rightarrow\hept{\begin{cases}a+b=2c\\a+c=2b\\b+c=2a\end{cases}\Rightarrow}}\hept{\begin{cases}a+b+c=3c\\a+b+c=3b\\a+b+c=3a\end{cases}\Rightarrow3a=3b=3c\Rightarrow a=b=c}\)

 Thay vào M, ta có:

\(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\left(a+a\right)\left(b+b\right)\left(c+c\right)}{abc}=\frac{2a.2b.2c}{abc}=2.2.2=8\)

29 tháng 10 2019

Đề sai sai gì đó nhá xem lại dùm

6 tháng 12 2016

Đặt \(\hept{\begin{cases}a-b=x\\b-c=y\\c-a=z\end{cases}}\)

Thế vào bài toán trở thành 

Cho: \(\frac{x+z}{xz}+\frac{x+y}{xy}+\frac{y+z}{yz}=2013\left(1\right)\)

Tính \(M=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

Từ (1) ta có

\(\left(1\right)\Leftrightarrow\frac{xy+yz+zx+yz+xy+zx}{xyz}=2013\)

\(\Leftrightarrow\frac{2\left(xy+yz+zx\right)}{xyz}=2013\)

\(\Leftrightarrow\frac{xy+yz+zx}{xyz}=\frac{2013}{2}\)

Ta lại có

\(M=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{xy+yz+zx}{xyz}=\frac{2013}{2}\)

6 tháng 12 2016

\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-a\right)\left(b-c\right)}+\frac{a-b}{\left(c-b\right)\left(c-a\right)}\)

\(=\frac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(b-a\right)-\left(b-c\right)}{\left(b-a\right)\left(b-c\right)}+\frac{\left(c-b\right)-\left(c-a\right)}{\left(c-b\right)\left(c-a\right)}\)

\(=\frac{1}{a-b}-\frac{1}{a-c}+\frac{1}{b-c}-\frac{1}{b-a}+\frac{1}{c-a}-\frac{1}{c-b}\)

\(=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=2013\)

\(\Rightarrow M=\frac{2013}{2}\)