Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\frac{12x}{5y^3}.\frac{15y^4}{8x^3}=\frac{12x.15y^4}{5y^3.8x^3}=\frac{4.3.x.3.5.y^4}{5y^3.2.4x^3}=\frac{9y}{2x^2}\)
b) \(\frac{a^2+ab}{b-a}:\frac{a+b}{2a^2-2b^2}=\frac{a^2+ab}{b-a}.\frac{2a^2-2b^2}{a+b}=-\frac{a\left(a+b\right)}{a-b}.\frac{2\left(a-b\right)\left(a+b\right)}{a+b}\)
\(=-\frac{a}{1}.\frac{2\left(a+b\right)}{1}=-2a\left(a+b\right)=-2a^2-2ab\)
1)\(4\left(a^4-1\right)x=5\left(a-1\right)\)
<=>x=\(\frac{5\left(a-1\right)}{a^4-1}\)
<=>x=\(\frac{5\left(a-1\right)}{\left(a-1\right)\left(a+1\right)\left(a^2+1\right)}=\frac{5}{\left(a+1\right)\left(a^2+1\right)}\)
Tương tự ta tính được y=\(\frac{4a^6+4}{5a^4-5a^2+5}\)
Suy ra x.y=\(\frac{5}{\left(a+1\right)\left(a^2+1\right)}.\frac{4\cdot\left(a^6+1\right)}{5\left(a^4-a^2+1\right)}\)=\(\frac{5}{\left(a+1\right)\left(a^2+1\right)}.\frac{4\left(a^2+1\right)\left(a^4-a^2+1\right)}{5\left(a^4-a^2+1\right)}\)
=\(\frac{5}{a+1}\)
Tương tự với x:y
\(A=\frac{4.6}{4.2}:\left(\frac{8.10}{6.8}.\frac{12.14}{10.12}.\frac{16.18}{14.16}...\frac{54.56}{54.53}\right)=\frac{6}{2}:\frac{56}{6}=\)
c) \(\frac{a\left(a^2-ab+b^2\right)}{b\left(a+b\right)\left(a^2-ab+b^2\right)}\)
=\(\frac{a}{b\left(a+b\right)}\)
Ta có : VT = \(\left(\frac{b}{a\left(a-b\right)}-\frac{a}{b\left(a-b\right)}\right)\cdot\left(\frac{ab\left(a-b\right)}{\left(a-b\right)\left(a+b\right)}\right)\)
\(=\left(\frac{b^2-a^2}{ab\left(a-b\right)}\right).\left(\frac{ab\left(a-b\right)}{\left(a-b\right)\left(a+b\right)}\right)\)
\(=\frac{\left(b-a\right)\left(b+a\right)}{ab\left(a-b\right)}\cdot\frac{ab\left(a-b\right)}{\left(a-b\right)\left(a+b\right)}\)
\(=-1\) (đpcm )
Bạn tham khảo:
Câu hỏi của Phạm Vũ Trí Dũng - Toán lớp 8 | Học trực tuyến
Áp dụng Cauchy, ta có:
\(a^4+b^2\ge2\sqrt{a^4b^2}=2a^2b\)
\(\Rightarrow\frac{1}{a^4+b^2+2ab^2}\le\frac{1}{2a^2b+2ab^2}\)
Tượng tự:
\(\frac{1}{b^4+a^2+2a^2b}\le\frac{1}{2a^2b+2ab^2}\)
\(\Rightarrow A\le\frac{2}{2ab\left(a+b\right)}\)
Lại có: \(\frac{1}{a}+\frac{1}{b}=2\)\(\Leftrightarrow\frac{a+b}{ab}=2\Rightarrow a+b=2ab\)
\(\Rightarrow A\le\frac{2}{\left(a+b\right)^2}\)
Áp dụng Schwarzt: \(2=\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\ge a+b\ge2\Rightarrow\left(a+b\right)^2\ge4\)
\(\Rightarrow A\le\frac{2}{4}=\frac{1}{2}\)
Dấu = xảy ra khi a=b=1
Áp dụng bđt cosi ta có :
A < = 1/2a^2b+2/ab^2 + 1/2ab^2+2a^2b
= 1/2ab . (1/a+b + 1/a+b) = 1/2ab . 2/a+b = 1/(a+b).(ab)
< = 1/\(\sqrt{ab}.2.ab\) = 1/2\(\sqrt{ab}^3\)
Có : 2 = 1/a + 1/b >= 2\(\sqrt{\frac{1}{ab}}\)
=> \(\sqrt{\frac{1}{ab}}\)< = 1
=> 1/ab < = 1
=> ab > =1
=> A < = 1/2.1 = 1/2
Dấu "=" xảy ra <=> a=b=1
Vậy GTLN của A = 1/2 <=> a=b=1
Tk mk nha