\(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\) : 

a) Rút gọn biểu thức .

b) CMR nếu a l...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2017

k mik nha

7 tháng 5 2017

Máy mik bị lag chữ a, mik thay bằng chữ x nha

a/

\(\frac{x^3+2x^2-1}{x^3+2x^2+2x+1}=\frac{x^3+x^2+x^2-1}{x^3+1+2x\left[x+1\right]}\)

\(=\frac{\left[x^3-x^2\right]+\left[x^2-x\right]+\left[x-1\right]}{\left[x^3+x^2\right]-\left[x^2+x\right]+\left[x+1\right]+2x\left[x+1\right]}\)

\(=\frac{x^2\left[x-1\right]+x\left[x-1\right]+\left[x-1\right]}{x^2\left[x+1\right]-x\left[x+1\right]+\left[x+1\right]+2x\left[x+1\right]}\)

\(=\frac{x^2\left[x+1\right]+\left[x-1\right]\left[x+1\right]}{\left[x^2-x+1+2x\right]\left[x+1\right]}\)

\(=\frac{\left[x+1\right]\left[x^2+x-1\right]}{\left[x+1\right]\left[x^2+x+1\right]}=\frac{x^2+x-1}{x^2+x+1}\)

x khác -1 bạn nhé [ví x = -1 thí ps k có giá trị]

b/

Gọi d là \(UCLN\left[x^2+x-1;x^2+x+1\right]\)

Mà \(x^2+x-1=x\left[x+1\right]-1lẻ⋮d\Rightarrow dlẻ\)

Mặt khác: \(x^2+x+1-\left[x^2+x-1\right]=2⋮d\)

=> d = 1

=> Phân số \(\frac{x^2+x-1}{x^2+x+1}\)

Tối giản khi x nguyên

Pạn thay x thành a giùm, cảm ơn

23 tháng 10 2015

em tham khảo câu hỏi tương tự nhé

16 tháng 2 2016

bài tán này khó quá 

16 tháng 2 2016

Mk mới học lớp 5 thôi.

21 tháng 2 2017

Ta có:  =

Điều kiện đúng a ≠  -1   ( 0,25 điểm).

Rút gọn đúng cho  0,75 điểm.

b.Gọi d là ước chung lớn nhất của  a2 + a – 1 và a2+a +1               

Vì a2 + a – 1 =  a(a+1) – 1   là số lẻ nên d là số lẻ

Mặt khác, 2 =  [ a2+a +1 – (a2 + a – 1) ]  d

Nên d = 1 tức là a2 + a + 1  và a2 + a – 1   nguyên tố cùng nhau.     

Vậy biểu thức A là phân số tối giản. 

26 tháng 4 2017

                                                                         Giải                                                                                                                    \(A=\frac{a^3+2a^2-1}{a^3+2a^22a+1}\)                                                                                                                                                           \(A=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+\left(a+1\right)}\)                                                                                                      \(A=\frac{a^2\left(a+1\right)\left(a+1\right)\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}\)                                                                                                                         \(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2 +a+1\right)}\)                                                                                                                                             \(A=\frac{a^2+a-1}{a^2+a+1}\)                                                                                                                                                                  b, Gọi d là ƯCLN \(\left(a^2+a-1;a^2+a+1\right)\)                                                                                                                   \(\Rightarrow\)\(a^2+a-1⋮d\)                                                                                                                                                                     \(a^2+a+1⋮d\)                                                                                                                                                               \(\Rightarrow\left(a^2+a+1\right)-\left(a^2+a-1\right)⋮d\)                                                                                                                            \(\Rightarrow2⋮d\)                                                                                                                                                                                     \(\Rightarrow d=1\) hoặc d=2                                                                                                                                                              Nhận xét : \(a^2+a-1=a\left(a+1\right)-1\)                                                                                                                         Với số nguyên a ta có :a(a+1) là tích 2 số nguyên liên tiếp \(\Rightarrow a\left(a+1\right)⋮2\)                                                                                \(\Rightarrow a\left(a+1\right)-1\) lẻ \(\Rightarrow a^2+a-1\) lẻ                                                                                                                        \(\Rightarrow\) d không thể bằng 2                                                                                                                                                           Vậy d=1 (đpcm)

4 tháng 2 2019

a. Ta có biến đổi:

\(A=\frac{a^3+2a^2-1}{a^3+2a^3+2a+1}\)

\(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)

\(A=\frac{a^2+a-1}{a^2+a+1}\)

b. Gọi d là ước chung lớn nhất của \(a^2+a-1\)và \(a^2+a+1\)

Vì \(a^2+a-1=a\left(a+1\right)-1\)là số lẻ nên d là số lẻ

Mặt khác, \(2=\left[a^2+a+1-\left(a^2+a-1\right)\right]⋮d\)

Nên d = 1 tức là \(a^2+a+1\)và \(a^2+a-1\)nguyên tố cùng nhau.

Vậy biểu thức A là phân số tối giản.

4 tháng 2 2019

cái này rất dễ mình tin bạn có thể giải được mà

21 tháng 6 2016

a) Ta có: \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

Điều kiện đúng A -1

Rút gọn đúng cho.

b) Gọi d là ước chung lớn nhất của \(a^2+a-1\)và \(a^2+a+1\)

Vì \(a^2+a-1\)\(a\left(a+1\right)-1\)là số lẻ nên d là số lẻ

Mặt khác, \(2=\left(a^2+a+1-\left(a^2+a-1\right)\right)\):d

Nên d = 1 tức là \(a^2+a+1\)\(a^2+a-1\)là nguyên tố cùng nhau.

Vậy biểu thức A là phân số tối giản.

21 tháng 6 2016

thực sự là toán lớp 6 ko ?

?"

19 tháng 10 2016

a. \(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

b. Trước hết ta nhận xét: \(\hept{\begin{cases}a^2+a-1=a\left(a+1\right)-1\\a^2+a+1=a\left(a+1\right)+1\end{cases}}\). Vì a(a + 1) là số chẵn nên cả hai số trên đều không chia hết cho 2.

Gọi d là ƯCLN của \(a^2+a-1\) và \(a^2+a+1\). Khi đó d khác 2 và \(a^2+a-1-\left(a^2+1+1\right)=-2\) chia hết d. Do d max và d khác 2 nên d = 1.

Vậy với a nguyên thì phân số \(A=\frac{a^2+a-1}{a^2+a+1}\) tối giản.

4 tháng 2 2019

a. Ta có biến đổi:

\(A=\frac{a^3+2a^2-1}{a^3+2a^3+2a+1}\)

\(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)

\(A=\frac{a^2+a-1}{a^2+a+1}\)

b. Gọi d là ước chung lớn nhất của \(a^2+a-1\)và \(a^2+a+1\)

Vì \(a^2+a-1=a\left(a+1\right)-1\)là số lẻ nên d là số lẻ

Mặt khác, \(2=\left[a^2+a+1-\left(a^2+a-1\right)\right]⋮d\)

Nên d = 1 tức là \(a^2+a+1\)và \(a^2+a-1\)nguyên tố cùng nhau.

Vậy biểu thức A là phân số tối giản.

4 tháng 2 2019

a. Ta có biến đổi:

\(A=\frac{a^3+2a^2-1}{a^3+2a^3+2a+1}\)

\(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)

\(A=\frac{a^2+a-1}{a^2+a+1}\)

b. Gọi d là ước chung lớn nhất của \(a^2+a-1\)và \(a^2+a+1\)

Vì \(a^2+a-1=a\left(a+1\right)-1\)là số lẻ nên d là số lẻ

Mặt khác, \(2=\left[a^2+a+1-\left(a^2+a-1\right)\right]⋮d\)

Nên d = 1 tức là \(a^2+a+1\)và \(a^2+a-1\)nguyên tố cùng nhau.

Vậy biểu thức A là phân số tối giản.

4 tháng 2 2019

a. Ta có biến đổi:

\(A=\frac{a^3+2a^2-1}{a^3+2a^3+2a+1}\)

\(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)

\(A=\frac{a^2+a-1}{a^2+a+1}\)

b. Gọi d là ước chung lớn nhất của \(a^2+a-1\)và \(a^2+a+1\)

Vì \(a^2+a-1=a\left(a+1\right)-1\)là số lẻ nên d là số lẻ

Mặt khác, \(2=\left[a^2+a+1-\left(a^2+a-1\right)\right]⋮d\)

Nên d = 1 tức là \(a^2+a+1\)và \(a^2+a-1\)nguyên tố cùng nhau.

Vậy biểu thức A là phân số tối giản.