Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,\(\frac{3}{2x+6}-\frac{x-6}{x\left(2x+6\right)}\)
=\(\frac{3x}{x\left(2x+6\right)}+\frac{x-6}{x\left(2x+6\right)}\)
=\(\frac{3x+x-6}{x\left(2x+6\right)}\)=\(\frac{4x-6}{x\left(2x+6\right)}=\frac{2\left(2x-3\right)}{x\left(2x+6\right)}\)
a)\(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)
\(84x+63-90x+30=175x+140+315\)
93-6x=175x+455
-362=181x
x=-2
b)\(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)
\(\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(4x+1\right)=0\)
\(\left(3x+1\right)\left(3x-1-4x-1\right)=0\)
\(\left(3x+1\right)\left(-x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x+1=0\\-x-2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{3}\\x=-2\end{cases}}\)
\(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}=\frac{8}{4x^2-1}\)
\(\Leftrightarrow\frac{\left(2x+1\right)^2}{4x^2-1}-\frac{\left(2x-1\right)^2}{4x^2-1}=\frac{8}{4x^2-1}\)
\(\Leftrightarrow\frac{4x^2+4x+1-4x^2+4x-1-8}{4x^2-1}=0\)
\(\Leftrightarrow\frac{8x-8}{4x^2-1}=0\)
\(\Rightarrow8x-8=0\)
\(\Rightarrow x=1\)
tick mình nha!
\(\Leftrightarrow\frac{\left(2x+1\right)^2}{4x^2-1}-\frac{\left(2x-1\right)^2}{4x^2-1}=\frac{9}{4x^2-1}\)
\(\Leftrightarrow\left(2x+1\right)^2-\left(2x-1\right)^2=9\)
\(\Leftrightarrow4x^2+4x+1-4x^2+4x+1=9\)
\(\Leftrightarrow8x=7\)
Vậy x=7/8
ĐKXĐ : \(\orbr{\begin{cases}x\ne-\frac{1}{2}\\x\ne\frac{1}{2}\end{cases}}\)
\(\Rightarrow\left(2x+1\right)^2-\left(2x-1\right)^2=8\)
\(\Leftrightarrow4x^2+4x+1-4x^2+4x-1-8=0\)
\(\Leftrightarrow8x-8=0\Leftrightarrow x=1\)(NHẬN)
Vậy tập nghiệm của phương trình là : S = {1}
b) ta có : * \(\left|x-4\right|=x-4\) khi \(x-4\ge0\)hay \(x\ge4\)
\(\Leftrightarrow\left|x-4\right|+3x=5\) \(\Leftrightarrow x+3x=5+4\Leftrightarrow x=\frac{9}{4}\)(LOẠI)
** \(\left|x-4\right|=4-x\) khi \(x-4< 0\) hay \(x< 4\)
\(\Leftrightarrow\left|x-4\right|+3x=5\)\(\Leftrightarrow4-x+3x-5=0\Leftrightarrow2x-1=0\)\(\Leftrightarrow x=\frac{1}{2}\)(NHẬN)
vậy tập nghiệm của phương trình là : S = { 1/2}
\(1,\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}=\frac{3}{2x+6}-\frac{x-6}{x\left(2x-6\right)}=\frac{3x-x+6}{x\left(2x-6\right)}=\frac{2x+6}{x\left(2x-6\right)}\)
\(2,\frac{1}{1-x}+\frac{2x}{x^2-1}=\frac{-1\left(x+1\right)+2x}{x^2-1}=\frac{x-1}{x^2-1}=\frac{1}{x+1}\)
\(3,\frac{1}{xy-x^2}-\frac{1}{y^2-xy}=\frac{1}{x\left(y-x\right)}-\frac{1}{y\left(y-x\right)}=\frac{y-x}{xy\left(y-x\right)}=\frac{1}{xy}\)
\(4,\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}=\frac{5\left(x+2\right)}{4\left(x-2\right)}.\frac{2\left(2-x\right)}{x+2}=\frac{-5}{2}\)
\(5,\frac{1-4x^2}{x^2+4x}:\frac{2-4x}{3x}=\frac{\left(1-2x\right)\left(1+2x\right)}{x\left(x+4\right)}.\frac{3x}{2\left(1-2x\right)}=\frac{3\left(1+2x\right)}{2x\left(x+4\right)}\)
\(6,\frac{12x}{5y^3}.\frac{15y^4}{8x^3}=\frac{9y}{2x^2}\)
\(DKXD:x#\frac{1}{2}va-\frac{1}{2}\)
suy ra \(\left(2x+1\right)8+\left(2x-1\right)\left(2x-1\right)=\left(2x+1\right)\left(2x+1\right)\)
tương đương \(16x+8+4x^2-4x+1=4x^2+4x+1\)
tương đương \(8x+8=0\)
tương đương\(8\left(x+1\right)=0\)
khi và chỉ khi \(x=0\left(nhan\right)\)
\(s\left\{0\right\}\)