Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)\) +\(\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}\right)\)
Ta có : \(\frac{1}{41}>\frac{1}{60};\frac{1}{42}>\frac{1}{60};...;\frac{1}{60}=\frac{1}{60}\) => \(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}>\frac{20}{60}=\frac{1}{3}\)
\(\frac{1}{61}>\frac{1}{80};\frac{1}{62}>\frac{1}{80};...;\frac{1}{80}=\frac{1}{80}\) => \(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}>\frac{20}{80}=\frac{1}{4}\)
=> A > \(\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
Vậy a >\(\frac{7}{12}\)
\(\frac{7}{12}=\frac{3}{12}+\frac{4}{12}=\frac{1}{4}+\frac{1}{3}\)
ta có:\(A=\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}=\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}\right)\)
ta có:\(\frac{1}{41}>\frac{1}{42}>\frac{1}{43}>...>\frac{1}{60}\Rightarrow\frac{1}{41}+\frac{1}{42}+...+\frac{1}{59}+\frac{1}{60}>\frac{1}{60}+...+\frac{1}{60}=\frac{20}{60}=\frac{1}{3}\left(1\right)\)
\(\frac{1}{61}>\frac{1}{62}>\frac{1}{63}>...>\frac{1}{80}\Rightarrow\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}>\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}=\frac{20}{80}=\frac{1}{4}\left(2\right)\)
từ (1) (2) suy ra \(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
\(\Rightarrow A=\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}>\frac{7}{12}\left(đfcm\right)\)
Ta có:
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80
1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80)
Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60
và 1/61> 1/62> ... >1/79> 1/80
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80
Vậy: 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12
=> 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 7/12
\(A>B\)
\(A=\frac{-5}{12}+\frac{4}{37}+\frac{17}{12}-\frac{41}{37}=(\frac{-5}{12}+\frac{17}{12})+(\frac{4}{37}-\frac{41}{37})=\frac{12}{12}+\frac{-37}{37}=1+(-1)=0\)
\(B=\frac{1}{2}-\frac{43}{101}+\frac{-1}{3}-\frac{1}{6}=\frac{-43}{101}+(\frac{1}{2}+\frac{-1}{3}-\frac{1}{6})=\frac{-43}{101}+(\frac{3}{6}+\frac{-2}{6}-\frac{1}{6})=\frac{-43}{101}+0=\frac{-43}{101}\)
\(A=\frac{-5}{12}+\frac{4}{37}+\frac{17}{12}-\frac{41}{37}.\)
\(A=\left(\frac{-5}{12}+\frac{17}{12}\right)-\left(\frac{41}{37}-\frac{4}{37}\right)\)
\(A=1-1=0\)
\(B=\frac{1}{2}-\frac{43}{101}+\left(\frac{-1}{3}\right)-\frac{1}{6}\)
\(B=\left(\frac{1}{2}+\left(\frac{-1}{3}\right)-\frac{1}{6}\right)-\frac{43}{101}\)
\(A=0-\frac{43}{101}=\frac{-43}{101}\)
\(C=\frac{-5}{6}\cdot\frac{12}{-7}\cdot-\frac{21}{15}\)
\(C=\frac{-5}{2.3}\cdot\frac{3.2.2}{-7}\cdot\frac{3.\left(-7\right)}{3.5}\)
\(C=\frac{-2}{1}=-2\)
Ta co : 1/41 + 1/42 + 1/43 + ... + 1/79 + 1/80 > 7/12
Vi : 7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80
1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80)
Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60 => (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60
Và 1/61> 1/62> ... >1/79> 1/80 => (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80
Vậy: 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12
=> 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 7/12
**** nhe
\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}\)
Tách tổng trên thành 2 nhóm, ta được :
\(\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}\right)\)
Mà \(\frac{1}{41}>\frac{1}{42}>...>\frac{1}{60}\); \(\frac{1}{61}>\frac{1}{62}>...>\frac{1}{80}\)
\(\Rightarrow\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}\right)\)
\(>\frac{1}{60}.20+\frac{1}{80}.20=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)( đpcm )
đề bài là CMR