Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a) \(x\in\left\{4;5;6;7;8;9;10;11;12;13\right\}\)
b) x=0
d) \(x=\frac{-1}{35}\) hoặc \(x=\frac{-13}{35}\)
e) \(x=\frac{2}{3}\)
\(a,\frac{-1}{2}+\left(x-3\right):\frac{-1}{2}=-1\frac{2}{3}.\)
\(\Rightarrow\left(x-3\right):\frac{-1}{2}=-1\frac{2}{3}-\frac{-1}{2}=\frac{-7}{6}\)
\(\Rightarrow x-3=\frac{-7}{6}\cdot\frac{-1}{2}=\frac{7}{12}\)
\(\Rightarrow x=\frac{7}{12}+3=3\frac{7}{12}\)
\(b.2,25+\frac{3}{2}:\left(x-5\right)=2\frac{1}{2}\)
\(\Rightarrow\frac{3}{2}:\left(x-5\right)=2\frac{1}{2}-2,25=\frac{1}{4}\)
\(\Rightarrow x-5=\frac{3}{2}:\frac{1}{4}=6\)
\(\Rightarrow x=6+5=11\)
\(c,\left(\frac{1}{3}-x\right)^2=\frac{1}{4}=\left(\frac{1}{2}\right)^2=\left(-\frac{1}{2}\right)^2\)
\(\Rightarrow\orbr{\begin{cases}\frac{1}{3}-x=\frac{1}{2}\\\frac{1}{3}-x=-\frac{1}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}-\frac{1}{2}=-\frac{1}{6}\\x=\frac{1}{3}-\frac{-1}{2}=\frac{5}{6}\end{cases}}\)
\(d,\frac{3}{2}+\frac{x-1}{3}=1\)
\(\Rightarrow\frac{x-1}{3}=1-\frac{3}{2}=-\frac{1}{2}\)
\(\Rightarrow x-1=-\frac{1}{2}\cdot3=-\frac{3}{2}\)
\(\Rightarrow x=-\frac{3}{2}+1=\frac{1}{2}\)
\(e,-\frac{6}{8}+\frac{x}{12}=\frac{5}{6}\)
\(\Rightarrow\frac{x}{12}=\frac{5}{6}-\frac{-6}{8}=\frac{19}{12}\)
\(\Rightarrow x=19\)
\(g,\frac{1}{2}-\frac{1}{3}\left(x-2\right)=-\frac{2}{3}\)
\(\Rightarrow-\frac{1}{3}\left(x-2\right)=-\frac{2}{3}-\frac{1}{2}=-\frac{7}{6}\)
\(\Rightarrow x-2=\frac{-7}{6}:\frac{-1}{3}=\frac{7}{2}\)
\(\Rightarrow x=\frac{7}{2}+2=2\frac{7}{2}\)
\(h,\frac{5}{2}\left(x+1\right)-\frac{1}{2}=3\frac{1}{2}\)
\(\Rightarrow\frac{5}{2}\left(x+1\right)=3\frac{1}{2}-\frac{1}{2}=3\)
\(\Rightarrow x+1=3:\frac{5}{2}=\frac{6}{5}\)
\(\Rightarrow x=\frac{6}{5}-1=\frac{1}{5}\)
\(k,\frac{x}{3}-\frac{1}{2}=-2\left(x+1\right)+3\)
\(\Rightarrow x\cdot\frac{1}{3}-\frac{1}{2}=-2x-2+3\)
\(\Rightarrow\frac{1}{3}x+2x=-2+3+\frac{1}{2}\)
\(\Rightarrow\frac{7}{3}x=\frac{3}{2}\Rightarrow x=\frac{3}{2}:\frac{7}{2}=\frac{3}{7}\)
a) Thay x = \(\sqrt{2}\)vào biểu thức ta có :
\(A=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^2-2\right]=\left(\sqrt{2}+1\right).\left(2-2\right)=0\)
Giá trị của A khi x = \(\sqrt{2}\)là 0
b) Ta có \(B=\frac{2x^23x-2}{x+2}=\frac{6x^3-2}{x+2}\)
Thay x = 3 vào B ta có : \(B=\frac{6.3^3-2}{3+2}=\frac{160}{5}=32\)
Giá trị của B khi x = 3 là 32
d) Đặt \(\frac{x}{3}=\frac{y}{5}=k\Rightarrow x=3k;y=5k\)
Khi đó D = \(\frac{5\left(3k\right)^2+3.\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}=\frac{45k^2+75k^2}{90k^2-75k^2}=\frac{120k^2}{15k^2}=8\)
=> D = 8
e) E = \(\left(1+\frac{z}{x}\right)\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{x+z}{x}.\frac{x+y}{y}.\frac{y+z}{z}=\frac{\left(x+y\right)\left(x+z\right)\left(y+z\right)}{xyz}\)
Lại có x + y + z = 0
=> x + y = -z
=> x + z = - y
=> y + z = - x
Khi đó E = \(\frac{-xyz}{xyz}=-1\)
\(\left(a^5b^2xy^2z^{n-1}\right)\left(-\frac{5}{3}ax^5y^2z\right)^3=-\frac{125}{27}.a^8b^2x^{16}y^7z^{n+2}\)
Hệ số \(\frac{-125}{27}\)
Biến : a8b2x16y7zn + 2
Câu b) tạm thời ko bít làm =.=
Bài 1 :
\(d)\) \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2x\)
\(\Leftrightarrow\)\(\frac{4^5.4}{3^5.3}.\frac{6^5.6}{2^5.2}=2x\)
\(\Leftrightarrow\)\(\frac{4^6}{3^6}.\frac{6^6}{2^6}=2x\)
\(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{2^6.3^6}{2^6}=2x\)
\(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{3^6}{1}=2x\)
\(\Leftrightarrow\)\(2^{12}=2x\)
\(\Leftrightarrow\)\(x=\frac{2^{12}}{2}\)
\(\Leftrightarrow\)\(x=2^{11}\)
\(\Leftrightarrow\)\(x=2048\)
Vậy \(x=2048\)
Chúc bạn học tốt ~
Bài 1 :
\(a)\) Ta có :
\(4+\frac{x}{7+y}=\frac{4}{7}\)
\(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{4}{7}-4\)
\(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{-24}{7}\)
\(\Leftrightarrow\)\(\frac{x}{-24}=\frac{7+y}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{-24}=\frac{7+y}{7}=\frac{x+7+y}{-24+7}=\frac{22+7}{-17}=\frac{29}{-17}=\frac{-29}{17}\)
Do đó :
\(\frac{x}{-24}=\frac{-29}{17}\)\(\Rightarrow\)\(x=\frac{-29}{17}.\left(-24\right)=\frac{696}{17}\)
\(\frac{7+y}{7}=\frac{-29}{17}\)\(\Rightarrow\)\(y=\frac{-29}{17}.7-7=\frac{-322}{17}\)
Vậy \(x=\frac{696}{17}\) và \(y=\frac{-322}{17}\)
Chúc bạn học tốt ~
Bài 1:
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)
Ta thấy:
\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)
\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\frac{10}{11}=0\)
\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)
Bài 2:
Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)
\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)
Mà \(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)
ta có \(\left(x-\frac{1}{5}\right)\left(y+\frac{1}{2}\right)\left(z-3\right)=0\)
Suy ra 1 trong 3 nhân tử phải bằng 0
xét từng trường hợp rồi làm tiếp
Ta có :đebai(*)
(x-1)^2>=0=>(x-1)^2+2>=2>0=>6/(x-1)^2+2<=3
|y-1|>=y-1;|y-2|.=0;|y-3|>=3-y=>|y-1|+|y-2|+|y-3|>=2=>|y-1|+|y-2|+|y-3|+1>=3
Kết hợp (*)=>x-1=0;y-1>=0;y-2=0:y-3<=0=>x=1;y=2