\(\frac{5}{7}.\frac{5}{9}+\frac{5}{7}.\frac{2}{9}-\frac{5}{7}.\frac{14}{9}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2017

\(\frac{5}{7}.\frac{5}{9}+\frac{5}{7}.\frac{2}{9}-\frac{5}{7}.\frac{14}{9}\)

\(=\frac{5}{7}.\left(\frac{5}{9}+\frac{2}{9}-\frac{14}{9}\right)\)

\(=\frac{5}{7}.\frac{-7}{9}\)

\(=\frac{-5}{9}\)

15 tháng 6 2017

\(\frac{5}{7}\cdot\frac{5}{9}+\frac{5}{7}\cdot\frac{2}{9}-\frac{5}{7}\cdot\frac{14}{9}\)

\(=\frac{5}{7}.\left(\frac{5}{9}+\frac{2}{9}-\frac{14}{9}\right)\)

\(=\frac{5}{7}\cdot-\frac{7}{9}\)

\(=-\frac{5}{9}\)

4 tháng 5 2018

\(a,\frac{7}{12}\cdot\frac{6}{11}+\frac{7}{12}\cdot\frac{5}{11}+2\frac{7}{12}\)

\(=\frac{7}{12}\cdot\left(\frac{6}{11}+\frac{5}{11}\right)+2\frac{7}{12}\)

\(=\frac{7}{12}+\frac{31}{12}\)

\(=\frac{38}{12}=\frac{19}{6}\)

\(b,\frac{-5}{9}\cdot\frac{-6}{13}+\frac{5}{-9}\cdot\frac{-5}{13}-\frac{5}{9}\)

\(=\frac{-5}{9}\cdot\frac{-6}{13}+\frac{-5}{9}\cdot\frac{-5}{13}+\frac{-5}{9}\cdot1\)

\(=\frac{-5}{9}\cdot\left(\frac{-6}{13}+\frac{-5}{13}+1\right)\)

\(=\frac{-5}{9}\cdot\left(\frac{-11}{13}+1\right)\)

\(=\frac{-5}{9}\cdot\frac{2}{13}\)

\(=\frac{-10}{117}\)

\(c,\)\(0,8\cdot\frac{-15}{14}-\frac{4}{5}\cdot\frac{13}{14}-1\frac{2}{5}\)

\(=\frac{4}{5}\cdot\frac{-15}{14}-\frac{4}{5}\cdot\frac{13}{14}-\frac{7}{5}\)

\(=\frac{4}{5}\cdot\left(\frac{-15}{14}-\frac{13}{14}\right)-\frac{7}{5}\)

\(=\frac{4}{5}\cdot\left(-2\right)-\frac{7}{5}\)

\(=\frac{-8}{5}-\frac{7}{5}\)

\(=-3\)

\(d,\)\(75\%\cdot\frac{6}{7}+5\%\cdot\frac{6}{7}+\frac{7}{10}\cdot1\frac{1}{7}\)

\(=\frac{3}{4}\cdot\frac{6}{7}+\frac{1}{20}\cdot\frac{6}{7}+\frac{7}{10}\cdot\frac{8}{7}\)

\(=\left(\frac{3}{4}+\frac{1}{20}\right)\cdot\frac{6}{7}+\frac{7}{10}\cdot\frac{8}{7}\)

\(=\frac{4}{5}\cdot\frac{6}{7}+\frac{4}{5}\cdot1\)

\(=\frac{4}{5}\cdot\left(\frac{6}{7}+1\right)\)

\(=\frac{4}{5}\cdot\frac{13}{7}\)

\(=\frac{52}{35}\)

4 tháng 5 2018

a)7/12.6/11+7/12.5/11-2.7/12

=7/12(6/11+5/11-2)

=7/12(1-2)

=7/12.(-1)

=-7/12

7 tháng 8 2019

a . 7/12 . 6/11 + 7/12 . 5/11 - 2 7/12

= 7/12 . ( 6/11 + 5/11 ) - 31/12

= 7/12 . 1 - 31/12

= 7/12 - 31/12

= -2

b . -5/9 . -6/13 + 5/-9 . -5/13 - 5/9

= -5/9 . ( -6/13 + -5/13 ) - 5/9

= -5/9 . ( -1 ) -5/9

= 5/9 - 5/9

= 0

2 tháng 7 2019

a)\(\frac{11^4.6-11^5}{11^4-11^5}:\frac{9^8.3-9^9}{9^8.5+9^8.7}\)

\(=1.6:\frac{9^8.3-9^8.9}{9^8.\left(5+7\right)}\)

\(=6:\frac{9^8.\left(3-9\right)}{9^8.12}\)

\(=6:\frac{9^8.\left(-6\right)}{9^8.12}\)

\(=6:\left(-\frac{6}{12}\right)\)

\(=6:\left(-\frac{1}{2}\right)\)

\(=-12\)

b) 3/5 : ( -1/5-1/6)+3/5:(-1/3-16/15) ( mình chuyển về ps luôn )

=3/5: (-11/30) + 3/5 : (-7/5) 

=3/5:[-11/30+(-7/5)]

=3/5:53/30

=18/53

c) (1/2-13/14):5/7-(-2/21+1/7):5/7

= -3/7:5/7-1/21:5/7

=(-3/7-1/21):5/7

=-10/21:5/7

=-2/3

câu b vá c mình làm tắt nha. chúc bạn học tốt

22 tháng 3 2018

A = 0 

B= 3/11

C= -1 

D= -9/10

a) Ta có: \(\frac{16}{15}\cdot\frac{-5}{14}\cdot\frac{54}{24}\cdot\frac{56}{21}\)

\(=\frac{16}{15}\cdot\frac{-5}{14}\cdot\frac{9}{4}\cdot\frac{8}{3}\)

\(=4\cdot\frac{-1}{3}\cdot\frac{4}{7}\cdot3\)

\(=12\cdot\frac{-4}{21}=\frac{-48}{21}=\frac{-16}{7}\)

b) Ta có: \(5\cdot\frac{7}{5}=\frac{35}{5}=7\)

c) Ta có: \(\frac{1}{7}\cdot\frac{5}{9}+\frac{5}{9}\cdot\frac{1}{7}+\frac{5}{9}\cdot\frac{3}{7}\)

\(=\frac{5}{9}\left(\frac{1}{7}+\frac{1}{7}+\frac{3}{7}\right)\)

\(=\frac{5}{9}\cdot\frac{5}{7}=\frac{25}{63}\)

d) Ta có: \(4\cdot11\cdot\frac{3}{4}\cdot\frac{9}{121}\)

\(=\frac{4\cdot11\cdot3\cdot9}{4\cdot121}=\frac{27}{11}\)

e) Ta có: \(\frac{3}{4}\cdot\frac{16}{9}-\frac{7}{5}:\frac{-21}{20}\)

\(=\frac{4}{3}+\frac{4}{3}=\frac{8}{3}\)

g) Ta có: \(2\frac{1}{3}-\frac{1}{3}\cdot\left[\frac{-3}{2}+\left(\frac{2}{3}+0,4\cdot5\right)\right]\)

\(=\frac{7}{3}-\frac{1}{3}\cdot\left[\frac{-3}{2}+\frac{2}{3}+2\right]\)

\(=\frac{7}{3}-\frac{1}{3}\cdot\frac{7}{6}\)

\(=\frac{7}{3}-\frac{7}{18}=\frac{42}{18}-\frac{7}{18}=\frac{35}{18}\)

14 tháng 7 2020

thank you,very well

20 tháng 5 2018

a) Đặt \(A=\frac{7^{15}}{1+7+7^2+...+7^{14}}\)

Đặt \(B=1+7+7^2+...+7^{14}\)

\(\Rightarrow7B=7+7^2+...+7^{15}\)

\(\Rightarrow7B-B=6B=7^{15}-1\)

\(\Rightarrow B=\frac{7^{15}-1}{6}\)

\(\Rightarrow A=\frac{7^{15}-1+1}{\frac{7^{15}-1}{6}}=\left(7^{15}-1\right).\frac{6}{7^{15}-1}+\frac{6}{7^{15}-1}=6+\frac{6}{7^{15}-1}\)

Tự làm tiếp nha

21 tháng 5 2018

bạn giải nốt đi

12 tháng 6 2018

b, Ta có:\(\dfrac{1+3+3^2+.....+3^{10}}{1+3+3^2+.....+3^9}\) \(=\dfrac{1}{1+3+3^2+...+3^9}+\dfrac{3+3^2+...+3^{10}}{1+3+3^2+...+3^9}\)\(=\dfrac{1}{1+3+3^2+...+3^9}+\dfrac{3.\left(1+3+3^2+...+3^9\right)}{1+3+3^2+...+3^9}\)

\(=\dfrac{1}{1+3+3^2+...+3^9}+3< 4\)

\(\Rightarrow\) \(\dfrac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}< 4\) \(\left(1\right)\)

Ta có :\(\dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)

\(=\dfrac{1}{1+5+5^2+...+5^9}+\dfrac{5+5^2+...+5^{10}}{1+5+5^2+....+5^9}\)

\(=\dfrac{1}{1+5+5^2+...+5^9}+\dfrac{5.\left(1+5+5^2+...+5^9\right)}{1+5+5^2+...+5^9}\)

\(=\dfrac{1}{1+5+5^2+...+5^9}+5>5\)

\(\Rightarrow\) \(\dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}>5\) \(\left(2\right)\)

Từ \(\left(1\right)và\left(2\right)\)

\(\Rightarrow\dfrac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}< \dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)

Vậy \(\dfrac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}< \dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)

12 tháng 6 2018

a, Đặt \(A\)\(=\dfrac{7^{15}}{1+7+7^2+...+7^{14}}\)

\(\Rightarrow\) \(\dfrac{1}{A}\) \(=\dfrac{1+7+7^2+...+7^{14}}{7^{15}}=\dfrac{1}{7^{15}}+\dfrac{7}{7^{15}}+\dfrac{7^2}{7^{15}}+...+\dfrac{7^{14}}{7^{15}}\)

\(=\dfrac{1}{7^{15}}+\dfrac{1}{7^{14}}+\dfrac{1}{7^{13}}+....+\dfrac{1}{7}\)

Đặt \(B=\dfrac{9^{15}}{1+9+9^2+...+9^{14}}\)

\(\Rightarrow\dfrac{1}{B}=\dfrac{1+9+9^2+...+9^{14}}{9^{15}}=\dfrac{1}{9^{15}}+\dfrac{9}{9^{15}}+\dfrac{9^2}{9^{15}}+...+\dfrac{9^{14}}{9^{15}}\)

\(=\dfrac{1}{9^{15}}+\dfrac{1}{9^{14}}+\dfrac{1}{9^{13}}+...+\dfrac{1}{9}\)

\(\dfrac{1}{7^{15}}>\dfrac{1}{9^{15}};\dfrac{1}{7^{14}}>\dfrac{1}{9^{14}};\dfrac{1}{7^{13}}>\dfrac{1}{9^{13}};....;\dfrac{1}{7}>\dfrac{1}{9}\)

\(\Rightarrow\dfrac{1}{A}>\dfrac{1}{B}\) \(\Rightarrow A< B\)

Vậy\(\dfrac{7^{15}}{1+7+7^2+...+7^{14}}>\dfrac{9^{15}}{1+9+9^2+....+9^{14}}\)