Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5^4.20^4}{25^5.4^5}=\frac{\left(5.20\right)^4}{\left(25.4\right)^5}=\frac{100^4}{100^5}=100^{-1}=\frac{1}{100}\)
= 5^4.5^4.4^4/(5^2)^5.4^5
= 5^8.4^4/5^10.4^5
= 1/5^2.4 = 1/100
k mk nha
Ta có: \(\frac{5^4.20^4}{25^5.45}\)
=\(\frac{\left(5.20\right)^4}{\left(25.4\right)^5}\)
= \(\frac{100^4}{100^5}\)
=\(\frac{1}{100}\)
\(\frac{5^4.20^4}{25^5.4^5}=\frac{5^4.5^4.4^4}{\left(5^2\right)^5.4^5}=\frac{5^8.4^4}{5^{10}.4^5}=\frac{1}{5^2.4}=\frac{1}{100}\)
a) \(\frac{5^4.20^4}{25^5.4^5}=\frac{5^4.\left(5.2^2\right)^4}{\left(5^2\right)^5.\left(2^2\right)^5}=\frac{5^4.5^4.2^8}{5^{10}.2^{10}}=\frac{5^8.2^8}{5^{10}.2^{10}}=\frac{1}{5^2.2^2}=\frac{1}{25.4}=\frac{1}{100}.\)
Chúc bạn học tốt!
Bài làm
\(a,\left(\frac{3}{7}+\frac{1}{2}\right)^2\)
\(=\left(\frac{3}{7}\right)^2+\left(\frac{1}{2}\right)^2\)
\(=\frac{9}{49}+\frac{1}{4}\)
\(=\frac{36}{196}+\frac{49}{196}\)
\(=\frac{85}{196}\)
\(b,\left(\frac{3}{4}-\frac{5}{6}\right)^2\)
\(=\left(-\frac{1}{12}\right)^2\)
\(=\frac{1}{144}\)
\(c,\frac{5^4.20^4}{25^5.4^5}\)
\(=\frac{5^4.\left(5.4\right)^4}{\left(5.5\right)^5.4^5}\)
\(=\frac{5^4.5^4.4^4}{5^5.5^5.4^5}\)
\(=\frac{1}{5.5.4}\)
\(=\frac{1}{100}\)
~ Check đúng cho minh nha. ~
# Học tốt #
\(a,\left(\frac{3}{7}+\frac{1}{2}\right)^2\)
\(< =>\left(\frac{6}{14}+\frac{7}{14}\right)^2\)
\(< =>\left(\frac{13}{14}\right)^2\)
\(< =>\frac{169}{196}\)
\(b,\left(\frac{3}{4}-\frac{5}{6}\right)^2\)
\(< =>\left(\frac{9}{12}-\frac{10}{12}\right)^2\)
\(< =>\left(\frac{-1}{12}\right)^2\)
\(< =>\frac{-1}{144}\)
\(c,\frac{5^4\cdot20^4}{25^5\cdot4^5}\)
\(< =>\frac{25^2\cdot\left(4\right)^4\cdot\left(5\right)^4}{25^5\cdot4^5}\)
\(< =>\frac{1\cdot1\cdot\left(5\right)^4}{25^3\cdot4}\)
\(< =>\frac{1\cdot25^2}{25^3\cdot4}\)
\(< =>\frac{1}{25\cdot4}\)
\(< =>\frac{1}{100}\)
Ta có
\(E=\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\cdot\frac{5^4.20^4}{25^5.4^5}\)
\(=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\cdot\frac{2^8.5^8}{5^{10}.2^{10}}\)
\(=\frac{2^{10}.3^8.\left(1-3\right)}{2^{10}.3^8.\left(1+5\right)}\cdot\frac{1}{5^2.2^2}\)
\(=\frac{\left(-2\right)}{6}\cdot\frac{1}{100}=-\frac{1}{3}\cdot\frac{1}{100}=-\frac{1}{300}\)
Vậy : \(E=-\frac{1}{300}\)
Bài làm
\(E=\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}.\frac{5^4.20^4}{25^5.4^5}\)
\(\Rightarrow E=\frac{2^{10}.3^8-2.2^9.3^9}{2^{10}.3^8+2^8.3^8.2^2.5}.\frac{5^4.4^4.5^4}{5^{10}.4^5}\)
\(\Rightarrow E=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}.\frac{5^8.4^4}{5^{10}.4^5}\)
\(\Rightarrow E=\frac{2^{10}\left(3^8-3^9\right)}{2^{10}\left(3^8+3^8.5\right)}.\frac{1}{5^2.4}\)
\(\Rightarrow E=\frac{3^8-3^9}{3^8\left(1+5\right)}.\frac{1}{100}\)
\(\Rightarrow E=\frac{3^8\left(1-3\right)}{3^8\left(1+5\right)}.\frac{1}{100}\)
\(\Rightarrow E=-\frac{2}{6}.\frac{1}{100}\)
\(\Rightarrow E=-\frac{1}{300}\)
\(\frac{5^4.20^4}{25^5.4^5}=\frac{5^4\left(1.15^4\right)}{\left(19^5.1\right).4^5}=\frac{5^4.15^4}{19^5.4^5}\)
\(\frac{5^4.20^4}{25^5.4^5}=\frac{\left(5.20\right)^4}{\left(25.4\right)^5}=\frac{100^4}{100^5}=\frac{1}{100}.\)
Chúc bạn học tốt!