\(\frac{4}{x^2-3x+2}-\frac{3}{2x^2-6x+1}+1=0\)

Em cảm ơn

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 2 2020

ĐKXĐ: ...

Đặt \(x^2-3x+2=t\Rightarrow2x^2-6x+1=2t-3\)

\(\frac{4}{t}-\frac{3}{2t-3}+1=0\)

\(\Leftrightarrow8t-12-3t+t\left(2t-3\right)=0\)

\(\Leftrightarrow2t^2+2t-12=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-3x+2=2\\x^2-3x+2=-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-3x=0\\x^2-3x+5=0\end{matrix}\right.\)

29 tháng 11 2019

Làm ngắn gọn thôi nhé :v

\(A=\frac{2x}{x^2-3x}+\frac{2x}{x^2-4x+3}+\frac{x}{x-1}\)

\(A=\frac{x^5-3x^4-3x^3+11x^2-6x}{x^5-8x^2+22x^2-24x+9}\)

\(A=\frac{x^4-3x^3-3x^2+11x-6}{x^4-8x^3+22x^2-24x+9}\)

\(A=\frac{\left(x-1\right)\left(x-1\right)\left(x+2\right)\left(x-3\right)}{\left(x-1\right)\left(x-1\right)\left(x-3\right)\left(x-3\right)}\)

\(A=\frac{x+2}{x-3}\)

\(B=\frac{x}{x+2}+\frac{2}{x-2}-\frac{4x}{4-x^2}\)

\(B=\frac{-x^4-4x^3+16x+16}{-x^4+8x^2-16}\)

\(B=\frac{\left(-x-2\right)\left(x+2\right)\left(x+2\right)\left(x-2\right)}{\left(-x-2\right)\left(x-2\right)\left(x+2\right)\left(x-2\right)}\)

\(B=\frac{x+2}{x-2}\)

\(C=\frac{1+x}{3-x}-\frac{1-2x}{3+x}-\frac{x\left(1-x\right)}{9-x^2}\)

\(C=\frac{1+x}{3-x}-\left(\frac{1-2x}{3+x}\right)-\frac{x\left(1-x\right)}{9-x^2}\)

\(C=\frac{10x}{-x^2+9}\)

\(D=\frac{5}{2x^2+6x}-\frac{4-3x^2}{x^2-9}-3\)

\(D=\frac{5}{2x^2+6x}-\left(\frac{4-3x^2}{x^2-9}\right)-3\)

\(D=\frac{51x^2+138x-45}{2x^4+6x^2-18x^2-54x}\)

\(D=\frac{3\left(17x-5\right)\left(x+3\right)}{2x\left(x+3\right)\left(x+3\right)\left(x-2\right)}\)

\(D=\frac{51x-15}{2x^3-18x}\)

\(E=\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\frac{3x-2}{x^2+2x+1}\)

\(E=\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\left(\frac{3x-2}{x^2+2x+1}\right)\)

\(E=\frac{10x^4-10}{x^6-3x^4+3x^2-1}\)

\(E=\frac{10\left(x^2+1\right)\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x+1\right)\left(x+1\right)\left(x-1\right)\left(x-1\right)\left(x-1\right)}\)

\(E=\frac{10x^2+10}{x^4-2x+1}\)

NV
16 tháng 11 2019

Đề bài yêu cầu gì bạn?

Mình là 1 câu mẫu, các câu kia tương tự nhé bạn !

a) \(Q=\frac{3x^2-x+3}{3x+2}=\frac{3x^2+2x-3x-2+5}{3x+2}=\frac{\left(3x+2\right)\left(x-1\right)+5}{3x+2}=x-1+\frac{5}{3x+2}\)

Để \(Q\) nhận giá trị nguyên thì \(5⋮3x+2\)

\(\Leftrightarrow3x+2\inƯ\left(5\right)=\left\{1,-1,5,-5\right\}\) ( Do \(x\in Z\) )

\(\Leftrightarrow x\in\left\{-\frac{1}{3};-1;1;-\frac{7}{3}\right\}\)

\(x\in Z\) nên \(\Leftrightarrow x\in\left\{-1;1\right\}\)

Vậy \(\Leftrightarrow x\in\left\{-1;1\right\}\)

P/s : Phương pháp làm các bài dạng này :

- Phân tích tử để tử chứa nhân tử giống dưới mẫu, khi đó phần còn thừa lại sẽ có dạng \(\frac{a}{ax+b}\) ( với a trên tử có thể là dạng số, dạng biến dưới mẫu )

- Rồi làm tiếp bằng cách để biểu thức đó nguyên thì tử phải chia hết chia hết cho mẫu.

Chúc bạn học tốt nhé !

12 tháng 3 2020

hu hu !! Sao ko có ai làm giúp em hết vậy!

Ngày mai em bị ăn đòn mất!!!hu hu

AH
Akai Haruma
Giáo viên
12 tháng 3 2020

a) Bạn xem lại vế phải của PT là $x^2-1$ hay $x^3-1$?

b) ĐK: $x\neq \pm 4$

PT \(\Leftrightarrow 5+\frac{48}{x-8}=\frac{2x-1}{x+4}+\frac{3x-1}{x-4}=\frac{2(x+4)-9}{x+4}+\frac{3(x-4)+11}{x-4}\)

\(\Leftrightarrow 5+\frac{48}{x-8}=2-\frac{9}{x+4}+3+\frac{11}{x-4}\)

\(\Leftrightarrow \frac{48}{x-8}=\frac{11}{x-4}-\frac{9}{x+4}=\frac{11(x+4)-9(x-4)}{(x-4)(x+4)}=\frac{2x+80}{x^2-16}\)

\(\Leftrightarrow \frac{24}{x-8}=\frac{x+40}{x^2-16}\Rightarrow 24(x^2-16)=(x-8)(x+40)\)

\(\Leftrightarrow 24x^2-384=x^2+32x-320\)

\(\Leftrightarrow 23x^2-32x-64=0\Rightarrow x=\frac{16\pm 24\sqrt{3}}{23}\) (cảm giác đề cứ sai sai)

c)

ĐK: $x\neq \pm \frac{2}{3}$

\(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)

\(\Leftrightarrow \frac{(3x+2)^2-6(3x-2)}{(3x-2)(3x+2)}=\frac{9x^2}{(3x-2)(3x+2)}\)

\(\Rightarrow (3x+2)^2-6(3x-2)=9x^2\)

\(\Leftrightarrow 9x^2+12x+4-18x+12=9x^2\)

\(\Leftrightarrow -6x+16=0\Rightarrow x=\frac{8}{3}\)

NV
6 tháng 3 2020

a/ĐKXĐ: \(y\ne4\)

Đặt \(y-4=x\)

\(1+\frac{45}{x^2}=\frac{14}{x}\Leftrightarrow x^2-14x+45=0\Rightarrow\left[{}\begin{matrix}x=9\\x=5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y-4=9\\y-4=5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=13\\y=9\end{matrix}\right.\)

b/ ĐKXĐ: \(x\ne1\)

Đặt \(x-1=y\)

\(\frac{5}{y}-\frac{4}{3y^2}=3\Leftrightarrow9y^2=15y-4\)

\(\Leftrightarrow9y^2-15y+4=0\Rightarrow\left[{}\begin{matrix}y=\frac{4}{3}\\y=\frac{1}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-1=\frac{4}{3}\\x-1=\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{7}{3}\\x=\frac{4}{3}\end{matrix}\right.\)

NV
6 tháng 3 2020

c/ ĐKXĐ: \(x\ne5\)

\(\Leftrightarrow2x-5=3x-15\)

\(\Leftrightarrow x=10\)

d/ ĐKXĐ: \(x\ne0\)

\(\Leftrightarrow2\left(x^2-12\right)=2x^2+3x\)

\(\Leftrightarrow3x=-24\Rightarrow x=-8\)

e/ ĐKXĐ: \(x\ne2\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\left(l\right)\\x=1\end{matrix}\right.\)

f/ DKXĐ: \(x\ne-\frac{1}{2}\)

\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)=8\)

\(\Leftrightarrow4x^2-1=8\)

\(\Leftrightarrow x^2=\frac{9}{4}\Rightarrow x=\pm\frac{3}{2}\)

27 tháng 2 2020

1)\(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}=\frac{3x}{\left(2x+6\right)x}-\frac{x-6}{2x^2+6x}\\ =\frac{3x}{2x^2+6x}-\frac{x-6}{2x^2+6x}=\frac{3x-\left(x-6\right)}{2x^2+6x}=\frac{2x+6}{x\left(2x+6\right)}=\frac{1}{x}\)

8 tháng 2 2020

\(\frac{4}{x^2-3x+2}-\frac{3}{2x^2-6x+1}+1=0\) \(Đkxđ:.......\)

Đặt: \(t=x^2-3x+2\left(t\ne0\right)\)

\(\Rightarrow2t=2x^2-6x+4\)

\(\Rightarrow2x^2-6x+1=2t-3\)

\(Pt:\Leftrightarrow\frac{4}{7}-\frac{3}{2t-3}+1=0\)

\(\Leftrightarrow4\left(2t-3\right)-3t+t\left(2t-3\right)=0\)

\(\Leftrightarrow8t-12-3t+2t^2-3t=0\)

\(\Leftrightarrow2t^2+2t-12=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-3\end{matrix}\right.\left(tm:\left[{}\begin{matrix}t\ne0\\t\ne\frac{3}{2}\end{matrix}\right.\right)\)

+ Với \(t=2\) thì: \(x^2-3x+2=2\)

\(\Leftrightarrow x\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\left(tmđk\right)\)

+ Với \(t=-3\) thì \(x^2-3x+2=-3\)

\(\Leftrightarrow x^2-2.\frac{3}{2}x+\frac{9}{4}+\frac{11}{4}=0\)

\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2+\frac{11}{4}=0\left(vô-lí\right)\)

Vậy pt có nghiệm: \(\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
8 tháng 2 2020

Bài 2:

ĐKXĐ: $x\neq 1;2;3;6$

PT $\Leftrightarrow \frac{2}{x-2}+\frac{3}{x-3}=\frac{6}{x-6}-\frac{1}{x-1}$

$\Leftrightarrow \frac{5x-12}{x^2-5x+6}=\frac{5x}{x^2-7x+6}$

Đặt $x^2+6=t$ thì $\frac{5x-12}{t-5x}=\frac{5x}{t-7x}$

$\Rightarrow (5x-12)(t-7x)=5x(t-5x)$

$\Leftrightarrow 10x^2+12t+84x=0$

$\Leftrightarrow 10x^2+12(x^2+6)+84x=0$

$\Leftrightarrow 22x^2+84x+72=0$

$\Leftrightarrow 11x^2+42x+36=0$

$\Rightarrow x=\frac{-21\pm 3\sqrt{5}}{11}$