Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}\)=\(\frac{c}{d}\)=k \(\Rightarrow\)a=bk ;c=dk
\(\Rightarrow\)\(\frac{a}{a-c}\)=\(\frac{bk}{bk-b}\)=\(\frac{bk}{b\left(k-1\right)}\)=\(\frac{k}{k-1}\)(1)
\(\frac{c}{c-d}\)=\(\frac{dk}{dk-d}\)=\(\frac{dk}{d\left(k-1\right)}\)=\(\frac{k}{k-1}\) (2)
Từ (1) và (2) \(\frac{a}{a-b}\)=\(\frac{c}{c-d}\) (đpcm)
a/b=c/d => b/a=d/c=>1-b/a=1-d/c=a-b/a=c-d/c đạo ngược lại ta có a/a-b=c/c-d
a) \(A=4+4^2+4^3+...+4^{200}\)
\(4A=4^2+4^3+...+4^{201}\)
\(4A-A=3A=4^{201}-4\)
\(A=\frac{4^{201}-4}{3}\)
b) \(B=1+5+5^2+...+5^{2017}\)
\(5B=5+5^2+5^3+...+5^{2018}\)
\(5B-B=4B=5^{2018}-1\)
\(B=\frac{5^{2018}-1}{4}\)
c) \(C=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{500}}\)
\(3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{499}}\)
\(3C-C=2C=1-\frac{1}{3^{500}}=\frac{3^{500}-1}{3^{500}}\)
\(C=\frac{\left(\frac{3^{500}-1}{3^{500}}\right)}{2}\)
T_i_c_k cho mình nha,có j ko hiểu cứ hỏi mình nhé ^^
a/c = c/b => ab = c^2
\(\frac{a^2+c^2}{b^2+c^2}=\frac{a^2+ab}{b^2+ab}=\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\)
xin lỗi mọi người mk ghi sai đề
\(\frac{a}{c}\)\(=\)\(\frac{c}{b}\)
ai k cho mk không
chúc mọi người học tốt
#)Giải :
1)Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{2}=\frac{y}{1}=\frac{z}{3}=\frac{3x-2y+4z}{6-2+12}=\frac{16}{16}=1\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=1\\\frac{y}{1}=1\\\frac{z}{3}=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\\z=3\end{cases}}}\)
Vậy x = 2; y = 1; z = 3
2)Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{1}=\frac{y}{6}=\frac{z}{3}=\frac{2x-3y+4z}{2-18+12}=\frac{-24}{-4}=6\Leftrightarrow\hept{\begin{cases}\frac{x}{1}=6\\\frac{y}{6}=6\\\frac{z}{3}=6\end{cases}\Leftrightarrow\hept{\begin{cases}x=6\\y=36\\z=18\end{cases}}}\)
Vậy x = 6; y = 36; z = 18
3)Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{0,5}=\frac{y}{0,3}=\frac{x-y}{0,5-0,3}=\frac{1}{0,2}=5\Leftrightarrow\hept{\begin{cases}\frac{x}{0,5}=5\\\frac{y}{0,3}=5\\\frac{z}{0,2}=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=2,5\\y=1,5\\z=1\end{cases}}}\)
Vậy x = 2,5; y = 1,5; z = 1
\(a,\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\) và 2x + 3y - z = 124
Ta có : \(\frac{x}{3}=\frac{y}{4}\)=> \(\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}\)=> \(\frac{y}{20}=\frac{z}{28}\)
=> \(\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\)
=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{124}{62}=2\)
Đến đây là tìm x,y,z rồi
b. Ta có : \(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=x+y+z(1)\)
Áp dụng tính chất bằng nhau của tỉ lệ thức ta được :
\(\frac{x+y+z}{2\left[x+y+z\right]}=x+y+z(2)\)
Nếu x + y + z = 0 thì từ \((1)\)suy ra x = 0 , y = 0 , z = 0
Nếu x + y + z \(\ne\)0 thì từ \((2)\)ta suy ra : \(\frac{1}{2}=x+y+z\), khi đó \((1)\)trở thành :
\(\frac{x}{\frac{1}{2}-x+1}=\frac{y}{\frac{1}{2}-y+1}=\frac{z}{\frac{1}{2}-z-2}=\frac{1}{2}\)
Do đó : 2x = \(\frac{3}{2}-x\)=> \(x=\frac{1}{2}\); 2y = \(\frac{3}{2}-y\)=> \(y=\frac{1}{2}\); 2z = \(-\frac{3}{2}-z\)=> \(z=-\frac{1}{2}\)
Vậy có hai đáp số \((0,0,0)\)và \((\frac{1}{2};\frac{1}{2};-\frac{1}{2})\)
Bạn làm ơn sửa lại đề nhé,tính mãi không ra!
Cho \(\frac{2}{x+y}=\frac{3}{3x-y}\).CMR; \(\frac{x}{y}=\frac{5}{3}\)
\(\frac{2}{x+y}=\frac{3}{3x-y}\Leftrightarrow2\left(3x-y\right)=3\left(x+y\right)\)
\(\Leftrightarrow6x-2y=3x+3y\Leftrightarrow3x=5y\).Chia cả hai vế của đẳng thức cho 3y,ta được:
\(\frac{3x}{3y}=\frac{5y}{3y}\Leftrightarrow\frac{x}{y}=\frac{5}{3}^{\left(đpcm\right)}\)
a) \(\frac{125^5}{5^{15}}=\frac{\left(5^3\right)^5}{5^{15}}=\frac{5^{15}}{5^{15}}=1\)
Mk không rảnh cho lắm !! nên chỉ làm câu a thui mấy câu khác để suy nghĩ đã
T nha
b) \(\left(\frac{2}{3}^{21}\right):\left(\frac{4}{9}^{10}\right)=\left(\frac{2}{3}^{21}\right):\left(\frac{2}{3}^2\right)^{10}=\left(\frac{2}{3}^{21}\right):\left(\frac{2}{3}^{20}\right)=\frac{2}{3}\)
Ta có : \(\frac{1+2a}{15}=\frac{7-3a}{20}=\frac{3b}{23+7a}\)
- Vì \(\frac{1+2a}{15}=\frac{7-3a}{20}\)
=> \(20\left(1+2a\right)=15\left(7-3a\right)\)
\(\Leftrightarrow20+40a=105-45a\Leftrightarrow40a+45a=105-20\)
\(\Leftrightarrow95a=95\Leftrightarrow a=1\)
- Thay a = 1 vào phương trình \(\frac{7-3a}{20}=\frac{3b}{23+7a}\) , ta có : \(\frac{7-3.1}{20}=\frac{3b}{23+7.1}\)
\(\Leftrightarrow\frac{4}{20}=\frac{3b}{30}\Leftrightarrow\frac{1}{5}=\frac{b}{10}\Leftrightarrow5b=10\Leftrightarrow b=2\)
Vậy a =1 , b = 2
quá dễ
=1
3 cái nha
không biết lớp 5 đây