\(\frac{3x}{x-2}\)+ \(\frac{3x}{\left(x-2\right)\left(x-5\right)}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2022

a,ĐKXĐ:\(\left\{{}\begin{matrix}x\ne2\\x\ne5\end{matrix}\right.\)

\(\dfrac{3x}{x-2}+\dfrac{3x}{\left(x-2\right)\left(x-5\right)}=\dfrac{x}{x-5}\\ \Leftrightarrow\dfrac{3x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}+\dfrac{3x}{\left(x-2\right)\left(x-5\right)}-\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}=0\\ \Leftrightarrow x\left(\dfrac{3x-15}{\left(x-2\right)\left(x-5\right)}+\dfrac{3}{\left(x-2\right)\left(x-5\right)}-\dfrac{x-2}{\left(x-2\right)\left(x-5\right)}\right)=0\\ \Leftrightarrow x.\dfrac{3x-15+3-x+2}{\left(x-2\right)\left(x-5\right)}=0\\ \Leftrightarrow\dfrac{x\left(2x-10\right)}{\left(x-2\right)\left(x-5\right)}=0\\ \Leftrightarrow\dfrac{2x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}=0\\ \Leftrightarrow\dfrac{2x}{x-2}=0\\ \Rightarrow2x=0\\ \Leftrightarrow x=0\left(tm\right)\)

\(b,ĐKXĐ:x\ge\dfrac{5}{4}\\ \left|3x-2\right|=4x-5\\ \Leftrightarrow\left[{}\begin{matrix}3x-2=4x-5\\3x-2=5-4x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\7x-7=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=1\left(ktm\right)\end{matrix}\right.\)

9 tháng 2 2018

\(a.\left(2-3x\right)\left(x^2+2x+3\right)=0.\)

\(\left(2-3x\right)=0\)

\(\left(x^2+2x+3\right)=0\)

\(TH1:2-3x=0\Leftrightarrow x=\frac{-2}{-3}\)

\(TH2:x^2+2x+3=0\Leftrightarrow\left(x^2+2x+1\right)+3\Leftrightarrow\left(x+1\right)^2+3>0\) 

b) \(3x-3x=5+2\) ( vô nghiệm)

c) vô nghiệm

d-\(x^2-5x-6=0\Leftrightarrow\left(x^2-x\right)+\left(6x-6\right)\Leftrightarrow x\left(x-1\right)+6\left(x-1\right)\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)

vậy ...

x=1

x=-6

E) \(\frac{2\left(x-3\right)^2}{3}=\frac{3x^2}{2}\) quy đồng khử mẫu ta được

\(4\left(x-3\right)^2-9x^2=0\Leftrightarrow4\left(x-3\right)^2-\frac{4.1.9x^2}{4}\) rút 4 ta được

\(4\left\{\left(x-3\right)^2-\frac{9x^2}{4}\right\}=0\Leftrightarrow4\left\{\left(x-3\right)^2-\left(\frac{3}{2}x\right)^2\right\}\Leftrightarrow4\left(x-3+\frac{3}{2}x\right)\left(x-3-\frac{3}{2}x\right)=0\) ( hằng đẳng thức số 3 )

tích = 0 

vậy ....

F)  trị tuyệt đối + bình phương của 1 số thực luôn lớn hơn hoặc = 0( định lí Pain)

phá trị tuyệt đối ta được

\(\left(x+5\right)^2-\left(3x-2\right)^2=0\)

\(\left(x+5-3x-2\right)\left(x+5+3x-2\right)=0\) ( hẳng đẳng thức số 3 )

tích = 0 suy ra 2 TH vậy .....

g) câu G bạn lên coccoc math bạn ghi là nó ra kết quả phân tích thành nhân tử  chứ làm = tay vừa dài vừa hại não :)

\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)-24=0\)

\(x\left(x-5\right)x\left(x^2-5x+10\right)=0\) ( coccoc math)

\(\left(x^2-5x+10\right)=0\Leftrightarrow\left(x^2-\frac{2x.5}{2}+\left(\frac{5}{2}\right)^2\right)+10-\frac{25}{4}=0\) ( 10-25/4) = 15/4

\(\left(x+\frac{5}{2}\right)^2+\frac{15}{4}>0\) ( vô nghiệm)

vậy....

12 tháng 3 2020

a) 0,75x(x + 5) = (x + 5)(3 - 1,25x)

<=> 0,75x(x + 5) - (x + 5)(3 - 1,25x) = (x + 5)(3 - 1,25x) - (x + 5)(3 - 1,25x)

<=> 0,75x(x + 5) - (x + 5)(3 - 1,25x) = 0

<=> (x + 5)(0,75 + 1,25x - 3) = 0

<=> (x + 5)(2x - 3) = 0

<=> x + 5 = 0 hoặc 2x - 3 = 0

<=> x = -5 hoặc x = 3/2

b) 4/5 - 3 = 1/5x(4x - 15)

<=> -11/5 = x(4x - 15)/5

<=> -11 = x(4x - 15)

<=> -11 = 4x2 - 15x

<=> 11 + 4x2 - 15x = 0 

<=> 4x2 - 4x - 11x + 11 = 0

<=> 4x(x - 1) - 11(x - 1) = 0

<=> (4x - 11)(x - 1) = 0

<=> 4x - 11 = 0 hoặc x - 1 = 0

<=> x = 11/4 hoặc x = 1

c) \(\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}=\frac{\left(x-3\right)\left(3-x\right)}{4}\)

<=> 12x - 36 - 2(x - 3)(2x - 5) = 3(x - 3)(3 - x)

<=> 12x - 36 - 4x2 + 10x + 12x - 30 = 9x - 3x2 - 27 + 9x

<=> 34x - 66 - 4x2 = 18x - 3x2 - 27

<=> 34x - 66 - 4x2 - 18x + 3x2 + 27 = 0

<=> 16x - 39x - x= 0

<=> x2 - 16x + 39x = 0

<=> (x - 3)(x - 13) = 0

<=> x - 3 = 0 hoặc x - 13 = 0

<=> x = 3 hoặc x = 13

d) \(\frac{\left(3x+1\right)\left(3x-2\right)}{3}+5\left(3x+1\right)=\frac{2\left(2x+1\right)\left(3x+1\right)}{3}+2x\left(3x+1\right)\)

<=> (3x + 1)(3x - 2) + 15(3x + 1) = 2(2x + 1)(3x + 1) + 6x(3x + 1)

<=> 9x2 - 6x + 3x - 2 + 45x + 15 = 12x3 + 4x + 6x + 2 + 18x2 + 6x

<=> 9x2 + 42x + 13 = 30x2 + 16x + 2

<=> 9x2 + 42x + 13 - 30x2 - 16x - 2 = 0

<=> -21x2 + 26x + 11 = 0

<=> 21x2 - 26x - 11 = 0

<=> 21x2 + 7x - 33x - 11 = 0

<=> 7x(3x + 1) - 11(3x + 1) = 0

<=> (7x - 11)(3x + 1) = 0

<=> 7x - 11 = 0 hoặc 3x + 1 = 0

<=> x = 11/7 hoặc x = -1/3

Bài 1:

a) Ta có: \(\frac{4}{5}x-3=\frac{1}{5}x\left(4x-15\right)\)

\(\Leftrightarrow\frac{4x}{5}-3=\frac{4x^2}{5}-3x\)

\(\Leftrightarrow\frac{12x}{15}-\frac{45}{15}-\frac{12x^2}{15}+\frac{45x}{15}=0\)

Suy ra: \(12x-45-12x^2+45x=0\)

\(\Leftrightarrow-12x^2+57x-45=0\)

\(\Leftrightarrow-12x^2+12x+45x-45=0\)

\(\Leftrightarrow-12x\left(x-1\right)+45\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-12x+45\right)=0\)

\(\Leftrightarrow-3\left(x-1\right)\left(4x-15\right)=0\)

\(-3\ne0\)

nên \(\left[{}\begin{matrix}x-1=0\\4x-15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\4x=15\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{15}{4}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{1;\frac{15}{4}\right\}\)

b) Ta có: \(\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}=\frac{\left(x-3\right)\left(3-x\right)}{4}\)

\(\Leftrightarrow\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}+\frac{\left(x-3\right)^2}{4}=0\)

\(\Leftrightarrow\frac{12\left(x-3\right)}{12}-\frac{2\left(x-3\right)\left(2x-5\right)}{12}+\frac{3\left(x-3\right)^2}{12}=0\)

Suy ra: \(12\left(x-3\right)-2\left(2x^2-11x+15\right)+3\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow12x-36-4x^2+22x-30+3x^2-18x+27=0\)

\(\Leftrightarrow-x^2+16x-39=0\)

\(\Leftrightarrow-\left(x^2-16x+39\right)=0\)

\(\Leftrightarrow x^2-13x-3x+39=0\)

\(\Leftrightarrow x\left(x-13\right)-3\left(x-13\right)=0\)

\(\Leftrightarrow\left(x-13\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-13=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\\x=3\end{matrix}\right.\)

Vậy: Tập nghiệm S={3;13}

c) Ta có: \(\frac{\left(3x+1\right)\left(3x-2\right)}{3}+5\left(3x+1\right)=\frac{2\left(2x+1\right)\left(3x+1\right)}{3}+2x\left(3x+1\right)\)

\(\Leftrightarrow\frac{9x^2-3x-2}{3}+5\left(3x+1\right)-\frac{12x^2+10x+2}{3}-2x\left(3x+1\right)=0\)

\(\Leftrightarrow\frac{9x^2-3x-2-12x^2-10x-2}{3}-6x^2+13x+5=0\)

\(\Leftrightarrow\frac{-3x^2-13x-4}{3}+\frac{3\left(-6x^2+13x+5\right)}{3}=0\)

Suy ra: \(-3x^2-13x-4-18x^2+39x+15=0\)

\(\Leftrightarrow-21x^2+26x+11=0\)

\(\Leftrightarrow-21x^2-7x+33x+11=0\)

\(\Leftrightarrow-7x\left(3x+1\right)+11\left(3x+1\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(-7x+11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\-7x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\-7x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{3}\\x=\frac{11}{7}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{-\frac{1}{3};\frac{11}{7}\right\}\)

2 tháng 4 2017

\(\left(x-1\right)\left(x+1\right)-2\left(2x+3\right)\le\left(x-2\right)^2+x\)

\(\Leftrightarrow x^2-1-4x-6\le x^2-4x+4+x\)

\(\Leftrightarrow x^2-4x-7\le x^2-3x+4\)

\(\Leftrightarrow x^2-4x-x^2+3x\le7+4\)

\(\Leftrightarrow-x\le11\)

\(\Leftrightarrow x\le-11\)

2 tháng 4 2017

biết đừng đăng anh à

2 tháng 3 2020

\(\left(3x-5\right)\left(-2x-7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-5=0\\-2x-7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=5\\-2x=7\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{-7}{2}\end{cases}}}\)

2 tháng 3 2020

\(9x^2-1=\left(1+3x\right)\left(2x-3\right)\)

\(\Leftrightarrow9x^2-1=2x-3+6x^2-9x\)

\(\Leftrightarrow9x^2-1=-7x-3+6x^2\)

\(\Leftrightarrow9x^2-1+7x+3-6x^2=0\)

\(\Leftrightarrow3x^2+2+7x=0\)

\(\Leftrightarrow3x^2+6x+x+2=0\)

\(\Leftrightarrow3x\left(x+2\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\3x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{3}\end{cases}}\)

NV
24 tháng 6 2019

b/ \(3-100x+8x^2=8x^2+x-300\)

\(\Leftrightarrow-101x=-303\)

\(\Rightarrow x=3\)

c/ \(5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-150\)

\(\Leftrightarrow25x+10-80x+10=24x+12-150\)

\(\Leftrightarrow-79x=-158\)

\(\Rightarrow x=2\)

d/ \(3\left(3x+2\right)-\left(3x+1\right)=12x+10\)

\(\Leftrightarrow9x+6-3x-1=12x+10\)

\(\Leftrightarrow-6x=5\)

\(\Rightarrow x=-\frac{5}{6}\)

e/ \(30x-6\left(2x-5\right)+5\left(x+8\right)=210+10\left(x-1\right)\)

\(\Leftrightarrow30x-12x+30+5x+40=210+10x-10\)

\(\Leftrightarrow13x=130\)

\(\Rightarrow x=10\)

NV
24 tháng 6 2019

\(A=x^2-4x+1=\left(x-2\right)^2-3\ge-3\)

\(\Rightarrow A_{min}=-3\) khi \(x=2\)

\(B=4x^2+4x+11=\left(2x+1\right)^2+10\ge10\)

\(\Rightarrow B_{min}=10\) khi \(x=-\frac{1}{2}\)

\(C=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\)

\(\Rightarrow C_{min}=-36\) khi \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

\(D=-x^2-8x-16+21=21-\left(x+4\right)^2\le21\)

\(\Rightarrow C_{max}=21\) khi \(x=-4\)

\(E=-x^2+4x-4+5=5-\left(x-2\right)^2\le5\)

\(\Rightarrow E_{max}=5\) khi \(x=2\)