![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
bạn không ghi yêu cầu nên mình làm như này
1) \(\frac{1}{x-3}\) và \(\frac{5}{x^2-3x}\)
Ta có: \(1.\left(x^2-3x\right)=x^2-3x\)
\(\left(x-3\right).5=5x-15\)
\(\Rightarrow x^2-3x\ne5x-15\)
\(\Rightarrow1.\left(x^2-3x\right)\ne\left(x-3\right).5\)
Vậy: \(\frac{1}{x-3}\ne\frac{5}{x^2-3x}\)
2) \(\frac{x}{x^2+x}\) và \(\frac{2}{x-1}\) và \(\frac{x+2}{x^2-1}\)
Ta có: \(x.\left(x-1\right)=x^2-x\)
\(2.\left(x^2+x\right)=2x^2+2x\)
\(\Rightarrow x^2-x\ne2x^2+2x\)
\(\Rightarrow x.\left(x-1\right)\ne2.\left(x^2+x\right)\)
\(\Rightarrow\frac{1-3x}{2x}\ne\frac{2}{x-1}\) (1)
Ta lại có: \(2.\left(x^2-1\right)=2x^2-2\)
\(\left(x-1\right)\left(x+2\right)=x^2+2x-x-2\)
\(=x^2-x-2\)
\(\Rightarrow2x^2-2\ne x^2-x-2\)
\(\Rightarrow2.\left(x^2-1\right)\ne\left(x-1\right)\left(x+2\right)\)
\(\Rightarrow\frac{2}{x-1}\ne\frac{x+2}{x^2-1}\) (2)
Từ (1) và (2) => \(\frac{x}{x^2+x}\ne\frac{2}{x-1}\ne\frac{x+2}{x^2-1}\)
3) \(\frac{1-3x}{2x}\) và \(\frac{3x-2}{2x-1}\) và \(\frac{3x-2}{4x^2-2x}\)
Ta có:\(\left(1-3x\right)\left(2x-1\right)=2x-1-6x^2+3x\)
\(=5x-1-6x^2\)
\(2x.\left(3x-2\right)=6x^2-4x\)
\(\Rightarrow5x-1-6x^2\ne6x^2-4x\)
\(\Rightarrow\left(1-3x\right)\left(2x-1\right)\ne2x\left(3x-2\right)\)
\(\Rightarrow\frac{1-3x}{2x}\ne\frac{3x-2}{2x-1}\)(1)
Ta lại có: \(\left(3x-2\right)\left(4x^2-2x\right)=12x^2-6x^2-8x^2+4x\)
\(=12x^3-14x^2+4x\)
\(\left(2x-1\right)\left(3x-2\right)=6x^2-4x-3x+2\)
\(=6x^2-7x+2\)
\(\Rightarrow12x^3-14x^2+4x\ne6x^2-7x+2\)
\(\Rightarrow\left(3x-2\right)\left(4x^2-2x\right)\ne\left(2x-1\right)\left(3x-2\right)\)
\(\Rightarrow\frac{3x-2}{2x-1}\ne\frac{3x-2}{4x^2-2x}\) (2)
Từ (1) và (2) => \(\frac{1-3x}{2x}\ne\frac{3x-2}{2x-1}\ne\frac{3x-2}{4x^2-2x}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\frac{4x-8}{2x^2+1}=0\)
\(\Rightarrow4x-8=0\left(2x^2+1\ne0\right)\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\)
Vậy x=2
b)
\(\frac{x^2-x-6}{x-3}=0\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x+2\right)}{x-3}=0\)
\(\Rightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
Vậy x=-2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a)=\frac{-2\left(x+3\right)}{x\left(1-3x\right)}.\frac{1-3x}{x\left(x+3\right)}\)
\(=\frac{-2}{x^2}\)
\(b)=\frac{\left(x+3\right)\left(x-3\right)}{x\left(x-3\right)}-\frac{x^2}{x\left(x-3\right)}+\frac{9}{x\left(x-3\right)}\)
\(=\frac{x^2-3x+3x-9-x^2+9}{x\left(x-3\right)}\)
\(=x\left(x-3\right)\)
\(c)=\frac{x+3}{\left(x-1\right)\left(x+1\right)}-\frac{1}{x\left(x+1\right)}\)
\(=\frac{\left(x+3\right).x}{x\left(x-1\right)\left(x+1\right)}-\frac{1.\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2+3x-x+1}{x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x\left(x+3\right)-\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x+3}{x+1}\)
# Sắp ik ngủ nên làm vậy hoi, ko chắc phần kq câu b và c đâu nha
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,\frac{2x+4}{10}+\frac{2-x}{15}=\frac{\left(2x+4\right).3}{10.3}+\frac{\left(2-x\right).2}{15.2}\)
\(=\frac{6x+12}{30}+\frac{4-2x}{30}=\frac{6x+12+4-2x}{30}=\frac{4x+16}{30}\)
\(=\frac{4.\left(x+4\right)}{30}=\frac{2\left(x+4\right)}{15}\)
\(b,\frac{3x}{10}+\frac{2x-1}{15}+\frac{2-x}{20}=\frac{3x.6}{10.6}+\frac{\left(2x-1\right).4}{15.4}+\frac{\left(2-x\right).3}{20.3}\)
\(=\frac{18x}{60}+\frac{8x-4}{60}+\frac{6-3x}{60}=\frac{18x+8x-4+6-3x}{60}=\frac{23x+2}{60}\)
\(c,\frac{x+1}{2x-2}+\frac{x^2+3}{2-2x^2}=\frac{x+1}{2\left(x-1\right)}+\frac{x^2+3}{2\left(1-x^2\right)}=\frac{x+1}{2\left(x-1\right)}+\frac{-x^2-3}{2\left(x^2-1\right)}\)
\(=\frac{x+1}{2\left(x-1\right)}+\frac{-x^2-3}{2\left(x-1\right)\left(x+1\right)}\)\(=\frac{\left(x+1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}+\frac{-x^2-3}{2\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2+2x+1-x^2-3}{2\left(x-1\right)\left(x+1\right)}=\frac{2x-2}{2\left(x-1\right)\left(x+1\right)}=\frac{2\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\)\(=\frac{1}{x+1}\)
3x-2x-2/x-2
=x-1/x-1
= 1
\( {{3x} \over x-1}\)+\({{-2x-1} \over x-1}\)=\({{3x+(-2x)-1} \over x-1}\)=\({{x-1} \over x-1}\)=1