\(\frac{3x^3-7x^2+5x-1}{2x^3-x^2-4x+3}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2018

\(\frac{3x^3-7x^2+5x-1}{2x^3-x^2-4x+3}=\frac{3x^2\left(x-1\right)-4x\left(x-1\right)+\left(x-1\right)}{2x^2\left(x-1\right)+x\left(x-1\right)-3\left(x-1\right)}\)

\(=\frac{\left(x-1\right)\left(3x^2-4x+1\right)}{\left(x-1\right)\left(2x^2+x-3\right)}=\frac{3x^2-4x+1}{2x^2+x-3}\)

\(=\frac{3x\left(x-1\right)-\left(x-1\right)}{2x\left(x-1\right)+3\left(x-1\right)}=\frac{\left(x-1\right)\left(3x-1\right)}{\left(x-1\right)\left(2x+3\right)}=\frac{3x-1}{2x+3}\)

5 tháng 12 2018

1/ \(\frac{x-3}{3xy}\)+\(\frac{5x+3}{3xy}\)\(\frac{6x}{3xy}\)=\(\frac{3}{y}\)

2/\(\frac{5x-7}{2x-3}\)+\(\frac{4-3x}{2x-3}\)=\(\frac{2x-3}{2x-3}\)=1

3/\(\frac{11x-7}{3-5x}\)-\(\frac{6x+4}{5x-3}\)=\(\frac{11x-7}{3-5x}\)+\(\frac{6x+4}{3-5x}\)=\(\frac{17x-3}{3-5x}\)

4/\(\frac{3}{2x+6}\)-\(\frac{x-6}{2x^2+6x}\)=\(\frac{3x}{x\left(2x+6\right)}\)-\(\frac{x-6}{x\left(2x+6\right)}\)=\(\frac{2x-6}{x\left(2x+6\right)}\)

5/\(\frac{1}{2x-10}\)+\(\frac{2x}{3x^2-15x}\)=\(\frac{1}{2\left(x-5\right)}\)+\(\frac{2x}{3x\left(x-5\right)}\)=\(\frac{3x}{6x \left(x-5\right)}\)+\(\frac{4x}{6x\left(x-5\right)}\)

=\(\frac{7x}{6x\left(x-5\right)}\)=\(\frac{7}{6\left(x-5\right)}\)

3 tháng 12 2018

Điều kiện: \(x\ne1\)

\(\frac{3x^3-7x^2+5x-1}{2x^3-x^2-4x+3}=\frac{3x^2\left(x-1\right)-4x\left(x-1\right)+\left(x-1\right)}{2x^2\left(x-1\right)+x\left(x-1\right)-3\left(x-1\right)}\)

\(=\frac{\left(x-1\right)\left(3x^2-4x+1\right)}{\left(x-1\right)\left(2x^2+x-3\right)}\)

\(=\frac{3x^2-4x+1}{2x^2+x-3}\)

\(=\frac{3x\left(x-1\right)-\left(x-1\right)}{2x\left(x-1\right)+3\left(x-1\right)}\)

\(=\frac{\left(x-1\right)\left(3x-1\right)}{\left(x-1\right)\left(2x+3\right)}=\frac{3x-1}{2x+3}\)

10 tháng 4 2020

Bài làm

j) \(\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{x^2-25}\) ĐKXĐ: \(x\ne\pm5\)

\(\Leftrightarrow\frac{\left(x+5\right)^2}{x^2-25}-\frac{\left(x-5\right)^2}{x^2-25}=\frac{20}{x^2-25}\)

\(\Rightarrow x^2+10x+25-x^2+10x-25=20\)

\(\Leftrightarrow20x=20\)

\(\Leftrightarrow x=1\)

Vậy x = 1 là nghiệm phương trình.

k) \(\frac{3}{x-4}+\frac{5x-2}{x^2-16}=\frac{4}{x+4}\)

\(\Leftrightarrow\frac{3\left(x+4\right)}{x^2-16}+\frac{5x-2}{x^2-16}=\frac{4\left(x-4\right)}{x^2-16}\)

\(\Rightarrow3x+12+5x-2=4x-16\)

\(\Leftrightarrow4x=-26\)

<=> \(x=-\frac{13}{2}\)

Vậy x = -13/2 là nghiệm phương trình.

l) \(\frac{2x-1}{3}-\frac{5x+2}{4}=2x\)

\(\Leftrightarrow4x-4-15x-6=24x\)

\(\Leftrightarrow-35x=10\)

\(\Leftrightarrow x=-\frac{2}{7}\)

Vậy x = -2/7 là nghiệm phương trình.

10 tháng 4 2020

Bài làm

2 - x = 3x + 1

<=> - x - 3x = -2 + 1

<=> -4x = -1

<=> x = 1/4

Vậy x = 1/4 là nghiệm phương trình.

4x + 7( x - 2 ) = -9x + 5

<=> 4x + 7x - 14 = -9x + 5

<=> 4x + 7x + 9x = 14 + 5

<=> 20x = 19

<=> x = 19/20

Vậy x = 19/20 là nghiệm phương trình.

5x - 2( 3x - 5 ) = 7x + 11

<=> 5x - 6x + 10 = 7x + 11

<=> 5x - 6x - 7x = 11 - 10

<=> -8x = -21

<=> x = 21/8

Vậy x = 21/8 là nghiệm phương trình.

( 5x + 2 )( x - 7 ) = 0

<=> \(\left[{}\begin{matrix}5x+2=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{2}{5}\\x=7\end{matrix}\right.\)

Vậy tập nghiệm phương trình S = { -2/5; 7 }

2x( x - 5 ) + 3( x - 5 ) = 0

<=> ( 2x + 3 )( x - 5 ) = 0

<=> \(\left[{}\begin{matrix}2x+3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{2}\\x=5\end{matrix}\right.\)

Vậy tập nghiệm phương trìh S = { -3/2; 5 }

\(\frac{5x-3}{6}=\frac{-2x+5}{9}\)

\(\Rightarrow6\left(-2x+5\right)=9\left(5x-3\right)\)

\(\Leftrightarrow-12x+30=45x-27\)

\(\Leftrightarrow-57x=-57\)

\(\Leftrightarrow x=1\)

Vậy x = 1 là nghiệm phương trình.

\(\frac{x}{3}-\frac{2x+1}{2}=\frac{5x}{6}\)

\(\Leftrightarrow2x-3\left(2x+1\right)=5x\)

\(\Leftrightarrow2x-6x-3=5x\)

\(\Leftrightarrow-9x=3\)

\(\Leftrightarrow x=-\frac{1}{3}\)

Vậy x = -1/3 là nghiệm phương trình.

\(\frac{x}{3}-\frac{2x+1}{2}=\frac{x}{6}-x\)

\(\Leftrightarrow2x-3\left(2x+1\right)=x-6x\)

\(\Leftrightarrow2x-6x-3=x-6x\)

\(\Leftrightarrow2x=3\)

\(\Leftrightarrow x=\frac{3}{2}\)

Vậy x = 3/2 là nghiệm phương trình.

\(\frac{3}{x+1}=\frac{5}{2x+2}\) ĐKXĐ: x khác 1

<=> \(\frac{6}{2x+2}=\frac{5}{2x+2}\)( vô lí )

Vậy phương trình trên vô nghiệm.

# Học tốt #

Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0 1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\) c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\) e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\) g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h,...
Đọc tiếp

Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0

1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)

c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)

e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\)

g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h, \(\frac{x+4}{5}.x+4=\frac{x}{3}-\frac{x-2}{2}\)

i, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\); k, \(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)

m, \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\); n, \(\frac{1}{4}\left(x+3\right)=3-\frac{1}{2}\left(x+1\right).\frac{1}{3}\left(x+2\right)\)

p, \(\frac{x}{3}-\frac{2x+1}{6}=\frac{x}{6}-x\); q, \(\frac{2+x}{5}-0,5x=\frac{1-2x}{4}+0,25\)

r, \(\frac{3x-11}{11}-\frac{x}{3}=\frac{3x-5}{7}-\frac{5x-3}{9}\); s, \(\frac{9x-0,7}{4}-\frac{5x-1,5}{7}=\frac{7x-1,1}{6}-\frac{5\left(0,4-2x\right)}{6}\)

t, \(\frac{2x-8}{6}.\frac{3x+1}{4}=\frac{9x-2}{8}+\frac{3x-1}{12}\); u, \(\frac{x+5}{4}-\frac{2x-3}{3}=\frac{6x-1}{3}+\frac{2x-1}{12}\)

v, \(\frac{5x-1}{10}+\frac{2x+3}{6}=\frac{x-8}{15}-\frac{x}{30}\); w, \(\frac{2x-\frac{4-3x}{5}}{15}=\frac{7x\frac{x-3}{2}}{5}-x+1\)

17

Đây là những bài cơ bản mà bạn!

29 tháng 3 2020

bạn ấy muốn thách xem bạn nào đủ kiên nhẫn đánh hết chỗ này

6 tháng 7 2018

\(\frac{3x^3-7x^2+5x-1}{2x^3-x^2-4x+3}=\frac{\left(3x^3-3x^2\right)-\left(4x^2-4x\right)+\left(x-1\right)}{\left(2x^3-2x^2\right)+\left(x^2-x\right)-\left(3x-3\right)}=\frac{\left(x-1\right).\left(3x^2-4x+1\right)}{\left(x-1\right).\left(2x^2+x-3\right)}\\ \)

\(=\frac{3x^2-4x+1}{2x^2+x-3}=\frac{\left(3x^2-3x\right)-\left(x-1\right)}{\left(2x^2-2x\right)+\left(3x-3\right)}=\frac{\left(x-1\right).\left(3x-1\right)}{\left(x-1\right).\left(2x+1\right)}=\frac{3x-1}{2x+1}\)

6 tháng 7 2018

\(\frac{3x^3-7x^2+5x-1}{2x^3-x^2-4x+3}\)

\(=\frac{3x^3-3x^2-4x^2+4x+x-1}{2x^3-2x^2+x^2-x-3x+3}\)

\(=\frac{\left(3x^3-3x^2\right)-\left(4x^2-4x\right)+\left(x-1\right)}{\left(2x^3-2x^2\right)+\left(x^2-x\right)-\left(3x-3\right)}\)

\(=\frac{3x^2\left(x-1\right)-4x\left(x-1\right)+\left(x-1\right)}{2x^2\left(x-1\right)+x\left(x-1\right)-3\left(x-1\right)}\)

\(=\frac{\left(3x^2-4x+1\right)\left(x-1\right)}{\left(2x^2+x-3\right)\left(x-1\right)}\)

\(=\frac{3x^2-4x+1}{2x^2+x-3}\)

\(=\frac{3x^2-3x-x+1}{2x^2-2x+3x-3}\)

\(=\frac{\left(3x^2-3x\right)-\left(x-1\right)}{\left(2x^2-2x\right)-\left(3x-3\right)}\)

\(=\frac{3x\left(x-1\right)-\left(x-1\right)}{2x\left(x-1\right)-3\left(x-1\right)}\)

\(=\frac{3x-1}{2x-3}\)

5 tháng 12 2017

\(\dfrac{3x^5+5x^3+1}{4x^4-7x^2+2}.\dfrac{x}{2x+3}.\dfrac{4x^4-7x^2+2}{3x^5+5x^3+1}\) ( sửa đề )

\(=\left[\dfrac{3x^5+5x^3+1}{4x^4-7x^2+2}.\dfrac{4x^4-7x^2+2}{3x^5+5x^3+1}\right].\dfrac{x}{2x+3}\)

\(=\dfrac{x}{2x+3}\)

5 tháng 12 2017

\(=\dfrac{x}{2x+3}\)

14 tháng 2 2020

Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\) 

 \(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)

\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\) 

 \(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)

\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\) 

\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)

\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)

\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)

a) ĐKXĐ: \(x\ne1\)

Ta có: \(\frac{7x-3}{x-1}=\frac{2}{3}\)

\(\Leftrightarrow3\left(7x-3\right)=2\left(x-1\right)\)

\(\Leftrightarrow21x-9=2x-2\)

\(\Leftrightarrow21x-9-2x+2=0\)

\(\Leftrightarrow19x-7=0\)

\(\Leftrightarrow19x=7\)

hay \(x=\frac{7}{19}\)

Vậy: \(x=\frac{7}{19}\)

b) ĐKXĐ: \(x\ne-1\)

Ta có: \(\frac{2\left(3-7x\right)}{1+x}=\frac{1}{2}\)

\(\Leftrightarrow4\left(3-7x\right)=1+x\)

\(\Leftrightarrow12-28x-1-x=0\)

\(\Leftrightarrow11-29x=0\)

\(\Leftrightarrow29x=11\)

hay \(x=\frac{11}{29}\)

Vậy: \(x=\frac{11}{29}\)

c) ĐKXĐ: \(x\notin\left\{\frac{-2}{3};\frac{1}{3}\right\}\)

Ta có: \(\frac{5x-1}{3x+2}=\frac{5x-7}{3x-1}\)

\(\Leftrightarrow\left(5x-1\right)\left(3x-1\right)=\left(5x-7\right)\left(3x+2\right)\)

\(\Leftrightarrow15x^2-5x-3x+1=15x^2+10x-21x-14\)

\(\Leftrightarrow15x^2-8x+1=15x^2-11x-14\)

\(\Leftrightarrow15x^2-8x+1-15x^2+11x+14=0\)

\(\Leftrightarrow3x+15=0\)

\(\Leftrightarrow3x=-15\)

hay x=-5

Vậy: x=-5

d) ĐKXĐ: \(x\notin\left\{1;\frac{-4}{3}\right\}\)

Ta có: \(\frac{4x+7}{x-1}=\frac{12x+5}{3x+4}\)

\(\Leftrightarrow\left(4x+7\right)\left(3x+4\right)=\left(12x+5\right)\left(x-1\right)\)

\(\Leftrightarrow12x^2+16x+21x+28=12x^2-12x+5x-5\)

\(\Leftrightarrow12x^2+37x+28=12x^2-7x-5\)

\(\Leftrightarrow12x^2+37x+28-12x^2+7x+5=0\)

\(\Leftrightarrow44x+33=0\)

\(\Leftrightarrow44x=-33\)

hay \(x=\frac{-3}{4}\)

Vậy: \(x=\frac{-3}{4}\)

18 tháng 4 2020

a)

\(\frac{7x-3}{x-1}=\frac{2}{3}\\ \Leftrightarrow\frac{21x-9}{3\cdot\left(x-1\right)}-\frac{2x-2}{3\cdot\left(x-1\right)}=0\\ \Leftrightarrow\frac{21x-9-2x+2}{3\cdot\left(x-1\right)}=0\\ \Leftrightarrow\frac{19x-7}{3\cdot\left(x-1\right)}=0\\ \Rightarrow19x-7=0\\ \Rightarrow x=\frac{7}{19}\)

b)

\(\frac{2\cdot\left(3-7x\right)}{1+x}=\frac{1}{2}\\ \Leftrightarrow\frac{12-28x}{2\cdot\left(1+x\right)}-\frac{1+x}{2\cdot\left(1+x\right)}=0\\ \Leftrightarrow\frac{12-28x-1-x}{2\cdot\left(1+x\right)}=0\\ \Leftrightarrow\frac{11-29x}{2\cdot\left(1+x\right)}=0\\\Rightarrow11-29x=0\\ \Rightarrow x=\frac{11}{29}\)

c)

\(\frac{5x-1}{3x+2}=\frac{5x-7}{3x-1}\\ \Leftrightarrow\frac{15x^2-8x+1}{\left(3x+2\right)\cdot\left(3x-1\right)}-\frac{15x^2-11x-14}{\left(3x+2\right)\cdot\left(3x-1\right)}=0\\ \Leftrightarrow\frac{15x^2-8x+1-15x^2+11x+14}{\left(3x+2\right)\cdot\left(3x-1\right)}=0\\ \Leftrightarrow\frac{3x+15}{\left(3x+2\right)\cdot\left(3x-1\right)}=0\\ \Rightarrow3x+15=0\\ \Rightarrow x=-5\)

d)

\(\frac{4x+7}{x-1}=\frac{12x+5}{3x+4}\\ \Leftrightarrow\frac{12x^2+37x+28}{\left(x-1\right)\cdot\left(3x+4\right)}-\frac{12x^2-7x-5}{\left(x-1\right)\cdot\left(3x+4\right)}=0\\ \Leftrightarrow\frac{12x^2+37x+28-12x^2+7x+5}{\left(x-1\right)\cdot\left(3x+4\right)}=0\\ \Leftrightarrow\frac{44x+33}{\left(x-1\right)\cdot\left(3x+4\right)}=0\\ \Leftrightarrow44x+33=0\\ \Rightarrow x=-\frac{3}{4}\)