Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(\frac{4}{x+2}+\frac{2}{x-2}+\frac{5x-6}{4-x^2}=\frac{4\left(x-2\right)+2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{6-5x}{\left(x+2\right)\left(x-2\right)}=\frac{6x-4+6-5x}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x+2}{\left(x+2\right)\left(x-2\right)}=\frac{1}{x+2}\)
b ) \(\frac{1-3x}{2x}+\frac{3x-2}{2x-1}+\frac{3x-2}{2x-4x^2}=\frac{\left(1-3x\right)\left(2x-1\right)+2x\left(3x-2\right)+2-3x}{2x\left(2x-1\right)}\)
\(=\frac{-6x^2+5x-1+6x^2-4x+2-3x}{2x\left(2x-1\right)}=\frac{-2x+1}{2x\left(2x-1\right)}=\frac{-1}{2x}\)
c ) \(\frac{1}{x^2+6x+9}+\frac{1}{6x-x^2-9}+\frac{x}{x^2-9}=\frac{1}{\left(x+3\right)^2}+\frac{1}{-\left(x-3\right)^2}+\frac{x}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{\left(x-3\right)^2-\left(x+3\right)^2+x\left(x+3\right)\left(x-3\right)}{\left(x+3\right)^2\left(x-3\right)^2}=\frac{-12x+x^3-9x}{\left(x+3\right)^2\left(x-3\right)^2}=\frac{x^3-21x}{x^4-18x^2+81}\)
d ) \(\frac{x^2+2}{x^3-1}+\frac{2}{x^2+x+1}+\frac{1}{1-x}=\frac{x^2+2+2\left(x-1\right)-\left(x^2+x+1\right)}{x^3-1}=\frac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\frac{1}{x^2+x+1}\)
e ) \(\frac{x}{x-2y}+\frac{x}{x+2y}+\frac{4xy}{4y^2-x^2}=\frac{x\left(x+2y\right)+x\left(x-2y\right)-4xy}{\left(x-2y\right)\left(x+2y\right)}=\frac{2x\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\frac{2x}{x+2y}\)
Bài 1:
a) Ta có: \(B=\left(2x-5\right)\cdot3x-2x\left(3x+1\right)\)
\(=6x^2-15x-6x^2-2x\)
\(=-17x\)
Thay \(x=\frac{1}{2}\) vào biểu thức B=-17x, ta được:
\(B=-17\cdot\frac{1}{2}=\frac{-17}{2}\)
Vậy: \(-\frac{17}{2}\) là giá trị của biểu thức \(B=\left(2x-5\right)\cdot3x-2x\left(3x+1\right)\) tại \(x=\frac{1}{2}\)
b) Ta có: \(G=\left(x+3\right)\cdot4x-3x\left(x-2\right)-x^2\)
\(=4x^2+12x-3x^2+6x-x^2\)
=18x
Thay x=-2 vào biểu thức G=18x, ta được:
\(G=18\cdot\left(-2\right)=-36\)
Vậy: -36 là giá trị của biểu thức \(G=\left(x+3\right)\cdot4x-3x\left(x-2\right)-x^2\) tại x=-2
Bài 2:
Sửa đề: \(P=\left(x-2\right)\cdot x-3x\left(x+1\right)+2x^2+5x-3\)
Ta có: \(P=\left(x-2\right)\cdot x-3x\left(x+1\right)+2x^2+5x-3\)
\(=x^2-2x-3x^2-3x+2x^2+5x-3\)
\(=-3\)
Vậy: P không phụ thuộc vào x(đpcm)
\(1,\frac{5x-3}{3}-\frac{6x-7}{4}+x=\frac{2x-5}{6}-x+2\)
\(\Leftrightarrow\frac{\left(5x-3\right)4}{12}-\frac{\left(6x-7\right)3}{12}+\frac{12x}{12}=\frac{\left(2x-5\right)2}{12}-\frac{12x}{12}+\frac{24}{12}\)
\(\Leftrightarrow\frac{20x-12}{12}-\frac{18x-21}{12}+\frac{12x}{12}=\frac{4x-10}{12}-\frac{12x}{12}+\frac{24}{12}\)
\(\Rightarrow20x-12-18x+21+12x=4x-10-12x+24\)
\(\Leftrightarrow20x-18x+12x-4x+12x=-10+24+12-21\)
\(\Leftrightarrow22x=5\)
\(\Leftrightarrow x=\frac{5}{22}\)
câu 2 tương tự
\(\frac{x-4}{5}+\frac{3x-2}{10}-x=\frac{2x-5}{3}-\frac{7x+2}{6}\)
\(\Leftrightarrow\frac{2x-8}{10}+\frac{3x-2}{10}-x=\frac{4x-10}{6}-\frac{7x+2}{6}\)
\(\Leftrightarrow\frac{5x-10}{10}-x=\frac{-3x-12}{6}\)
\(\Leftrightarrow\frac{2x-2}{5}-x+\frac{x+4}{2}=0\)
\(\Leftrightarrow\frac{4x-4+5x+20-10x}{10}=0\)
\(\Leftrightarrow x=16\)
Vậy tập nghiệm của phương trình là S={16}
a) \(\frac{4x-8}{2x^2+1}=0\)
\(\Rightarrow4x-8=0\left(2x^2+1\ne0\right)\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\)
Vậy x=2
b)
\(\frac{x^2-x-6}{x-3}=0\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x+2\right)}{x-3}=0\)
\(\Rightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
Vậy x=-2
\(\Leftrightarrow\frac{5\left(x+5\right)-3\left(x-3\right)}{15}=\frac{5\left(x+5\right)-3\left(x-3\right)}{\left(x-3\right)\left(x+5\right)}\)
\(\Leftrightarrow\frac{2x+34}{15}=\frac{2x+34}{x^2+2x-15}\Leftrightarrow\orbr{\begin{cases}2x+34=0\\x^2+2x-15=15\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-17\\x^2+2x-30=0\end{cases}}\)
Từ đó tìm được \(S=\left\{-17;\sqrt{31}-1;-\sqrt{31}-1\right\}\)
bạn không ghi yêu cầu nên mình làm như này
1) \(\frac{1}{x-3}\) và \(\frac{5}{x^2-3x}\)
Ta có: \(1.\left(x^2-3x\right)=x^2-3x\)
\(\left(x-3\right).5=5x-15\)
\(\Rightarrow x^2-3x\ne5x-15\)
\(\Rightarrow1.\left(x^2-3x\right)\ne\left(x-3\right).5\)
Vậy: \(\frac{1}{x-3}\ne\frac{5}{x^2-3x}\)
2) \(\frac{x}{x^2+x}\) và \(\frac{2}{x-1}\) và \(\frac{x+2}{x^2-1}\)
Ta có: \(x.\left(x-1\right)=x^2-x\)
\(2.\left(x^2+x\right)=2x^2+2x\)
\(\Rightarrow x^2-x\ne2x^2+2x\)
\(\Rightarrow x.\left(x-1\right)\ne2.\left(x^2+x\right)\)
\(\Rightarrow\frac{1-3x}{2x}\ne\frac{2}{x-1}\) (1)
Ta lại có: \(2.\left(x^2-1\right)=2x^2-2\)
\(\left(x-1\right)\left(x+2\right)=x^2+2x-x-2\)
\(=x^2-x-2\)
\(\Rightarrow2x^2-2\ne x^2-x-2\)
\(\Rightarrow2.\left(x^2-1\right)\ne\left(x-1\right)\left(x+2\right)\)
\(\Rightarrow\frac{2}{x-1}\ne\frac{x+2}{x^2-1}\) (2)
Từ (1) và (2) => \(\frac{x}{x^2+x}\ne\frac{2}{x-1}\ne\frac{x+2}{x^2-1}\)
3) \(\frac{1-3x}{2x}\) và \(\frac{3x-2}{2x-1}\) và \(\frac{3x-2}{4x^2-2x}\)
Ta có:\(\left(1-3x\right)\left(2x-1\right)=2x-1-6x^2+3x\)
\(=5x-1-6x^2\)
\(2x.\left(3x-2\right)=6x^2-4x\)
\(\Rightarrow5x-1-6x^2\ne6x^2-4x\)
\(\Rightarrow\left(1-3x\right)\left(2x-1\right)\ne2x\left(3x-2\right)\)
\(\Rightarrow\frac{1-3x}{2x}\ne\frac{3x-2}{2x-1}\)(1)
Ta lại có: \(\left(3x-2\right)\left(4x^2-2x\right)=12x^2-6x^2-8x^2+4x\)
\(=12x^3-14x^2+4x\)
\(\left(2x-1\right)\left(3x-2\right)=6x^2-4x-3x+2\)
\(=6x^2-7x+2\)
\(\Rightarrow12x^3-14x^2+4x\ne6x^2-7x+2\)
\(\Rightarrow\left(3x-2\right)\left(4x^2-2x\right)\ne\left(2x-1\right)\left(3x-2\right)\)
\(\Rightarrow\frac{3x-2}{2x-1}\ne\frac{3x-2}{4x^2-2x}\) (2)
Từ (1) và (2) => \(\frac{1-3x}{2x}\ne\frac{3x-2}{2x-1}\ne\frac{3x-2}{4x^2-2x}\)
\(ĐK:x\ne\pm1\)
\(PT\Leftrightarrow\frac{3x+2}{\left(x-1\right)^2}-\frac{6}{\left(x+1\right)\left(x-1\right)}-\frac{3x-2}{\left(x+1\right)^2}\)
Bạn tự quy đồng rồi rút gọn nhé!!