\(\frac{3x^2}{2}+y^2+z^2+yz=1\)

Tìm min, mã:

B=x+y+z

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2017

\(GT\Leftrightarrow3x^2+y^2+z^2+\left(y+z\right)^2=2\)

Áp dụng BĐT bunyakovsky:\(y^2+z^2\ge\frac{1}{2}\left(y+z\right)^2\)

\(2\ge\frac{3}{2}\left(y+z\right)^2+3x^2\Leftrightarrow4\ge3\left(y+z\right)^2+6x^2=3\left[\left(y+z\right)^2+2x^2\right]\)

\(\left(2+1\right)\left[\left(y+z\right)^2+2x^2\right]\ge2\left(x+y+z\right)^2\)

\(\left(x+y+z\right)^2\le2\Leftrightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)

23 tháng 10 2016

đề sai à bn

23 tháng 10 2016

đề đúng đó bạn

27 tháng 3 2017

Hi! Mình có lời giải cho phần này rồi. Mình sẽ post lên sớm

28 tháng 3 2017

Hi ~! Mình xin slot trước :)

Giải

Dự đoán dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\) khi đó \(P=\frac{3\sqrt{3}}{4}\)

Ta sẽ chứng minh nó là GTNN của \(P\)

Ta có: \(x^2+xy+y^2=\frac{3\left(x+y\right)^2+\left(x-y\right)^2}{4}\ge\frac{3\left(x+y\right)^2}{4}\)

Do đó ta cần chứng minh 

\(\frac{x+y}{4yz+1}+\frac{y+z}{4xz+1}+\frac{x+z}{4xy+1}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{x+y}{\left(y+z\right)^2+1}+\frac{y+z}{\left(x+z\right)^2+1}+\frac{x+z}{\left(x+y\right)^2+1}\ge\frac{3}{2}\)

Ta có: \(x+y+z=\frac{3}{2}\Rightarrow2x+2y+2z=3\)

\(\Rightarrow\left(x+y\right)+\left(y+z\right)+\left(x+z\right)=2\)

Đặt \(\hept{\begin{cases}a=x+y\\b=y+z\\c=z+x\end{cases}}\) thì ta cần chứng minh 

\(\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}\ge\frac{3}{2}\)\(\forall\hept{\begin{cases}a,b,c>0\\a+b+c=3\end{cases}}\)

Lại có: \(\frac{a}{b^2+1}=a-\frac{ab^2}{b^2+1}\ge a-\frac{ab}{2}\)

Tương tự ta cũng có: \(\frac{b}{c^2+1}\ge b-\frac{bc}{2};\frac{c}{a^2+1}\ge c-\frac{ac}{2}\)

Cộng theo vế các BĐT ta có: \(\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}\ge a-\frac{ab}{2}+b-\frac{bc}{2}+c-\frac{ac}{2}\)

\(=\left(a+b+c\right)-\frac{ab+bc+ca}{2}\ge3-\frac{3}{2}=\frac{3}{2}\) 

BĐT đã được c/m vậy ta có \(P\ge\frac{3\sqrt{3}}{4}\Leftrightarrow x=y=z=\frac{1}{2}\)

8 tháng 9 2017

Áp dụng bđt Svacsơ ta có :

\(P=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{x^2}{x+z}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)

ta lại có : \(\left(x^2+y^2+z^2\right)\left(y^2+z^2+x^2\right)\ge\left(xy+yz+zx\right)^2\)( bunhiacopxki )

\(\Rightarrow x^2+y^2+z^2\ge\left|xy+yz+xz\right|\ge xy+yz+xz\)

\(\Rightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3zx\)

\(\Rightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)=3\)

\(\Rightarrow x+y+z\ge\sqrt{3}\)

\(\Rightarrow P\ge\frac{x+y+z}{2}\ge\frac{\sqrt{3}}{2}\) có GTNN là \(\frac{\sqrt{3}}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)

Vậy \(P_{min}=\frac{\sqrt{3}}{2}\) tại \(x=y=z=\frac{1}{\sqrt{3}}\)

26 tháng 4 2020

Ta có \(P=\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}+\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}\)

\(=\frac{\frac{\left(yz+1\right)^2}{z^2}}{\frac{zx+1}{x}}+\frac{\frac{\left(zx+1\right)^2}{x^2}}{\frac{xy+1}{y}}+\frac{\frac{\left(xy+1\right)^2}{y^2}}{\frac{yz+1}{z}}\)

\(=\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}+\frac{\left(z+\frac{1}{x}\right)^2}{x+\frac{1}{y}}+\frac{\left(x+\frac{1}{y}\right)^2}{y+\frac{1}{z}}\)

Áp dụng BĐT \(\frac{a_1^2}{b_1}+\frac{a_2^2}{b_2}+\frac{a_3^2}{b_3}\ge\frac{\left(a_1+a_2+a_3\right)^2}{b_1+b_2+b_3}\)

Dấu "=" xảy ra khi \(\frac{a_1}{b_1}=\frac{a_2}{b_2}=\frac{a_3}{c_3}\)

\(P=\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}+\frac{\left(z+\frac{1}{x}\right)^2}{x+\frac{1}{y}}+\frac{\left(x+\frac{1}{y}\right)^2}{y+\frac{1}{z}}\ge\frac{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}\)

\(P\ge a+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

Áp dụng BĐT: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

=> \(P\ge x+y+z+\frac{9}{x+y+z}=\left[x+y+z+\frac{9}{4\left(x+y+z\right)}\right]+\frac{27}{4\left(x+y+z\right)}\)

Ta có: \(x+y+z+\frac{9}{4\left(x+y+z\right)}\ge2\sqrt{\frac{9}{4}}=3;\frac{27}{4\left(x+y+z\right)}=\frac{27}{4\cdot\frac{3}{2}}=\frac{9}{2}\)

=> \(P\ge3+\frac{9}{2}=\frac{15}{2}\).

Dấu "=" xảy ra <=> x=y=z=\(\frac{1}{2}\)

Vậy MinP=\(\frac{15}{2}\)đạt được khi x=y=z=\(\frac{1}{2}\)

26 tháng 4 2020

Ta có:

\(P=\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}+\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}\)

\(=\frac{\left(\frac{yz+1}{z}\right)^2}{\left(\frac{zx+1}{x}\right)}+\frac{\left(\frac{zx+1}{x}\right)^2}{\left(\frac{xy+1}{y}\right)}+\frac{\left(\frac{xy+1}{y}\right)^2}{\left(\frac{yz+1}{z}\right)}\)

\(=\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}+\frac{\left(z+\frac{1}{x}\right)^2}{x+\frac{1}{y}}+\frac{\left(x+\frac{1}{y}\right)^2}{y+\frac{1}{z}}\)

Áp dụng BĐT Bunhiacopxki dạng phân thức, ta có:

\(\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}+\frac{\left(z+\frac{1}{x}\right)^2}{x+\frac{1}{y}}+\frac{\left(x+\frac{1}{y}\right)^2}{y+\frac{1}{z}}\)\(\ge\frac{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}=x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\ge\left(x+y+z\right)+\frac{9}{x+y+z}=\left(x+y+z\right)+\frac{9}{4\left(x+y+z\right)}\)

\(+\frac{27}{4\left(x+y+z\right)}\ge2\sqrt{\left(x+y+z\right).\frac{9}{4\left(x+y+z\right)}}+\frac{27}{4.\frac{3}{2}}=\frac{15}{2}\)(Áp dụng BĐT Cô - si cho 2 số không âm)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{2}\)