Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3x-1}{5}=\frac{5y-2}{7}=\frac{3x+5y-3}{4x}=\frac{\left(3x-1\right)+\left(5y-2\right)}{5+7}=\frac{3x+5y-3}{12}.\)
\(\frac{3x+5y-3}{4x}=\frac{3x+5y-3}{12}\Rightarrow4x=12\Rightarrow x=3\)
1. -2x=5y =>\(\frac{x}{y}=\frac{-5}{2}=>y=\frac{-2x}{5}\)
Thế y=\(\frac{-2x}{5}\) ta được:
x+\(\frac{-2x}{5}\)=30 \(\Rightarrow\frac{5x-2x}{5}=30\)
\(\Rightarrow3x=150\)\(\Rightarrow x=50\)
=>y=30-x=30-50=-20.
Vậy x=50; y=-20.
Những bài khác tương tự bạn nhé!
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)
suy ra: \(x=2k;\)\(y=3k;\)\(z=4k\)
Ta có: \(x^2+y^2+z^2=116\)
<=> \(\left(2k\right)^2+\left(3k\right)^2+\left(4k\right)^2=116\)
<=> \(29k^2=116\)
<=> \(k^2=4\)
<=> \(k=\pm2\)
tự làm nốt
a ) \(\frac{3x+1}{5y+2}=\frac{6x+3}{10y+6}\)
\(\Leftrightarrow\left(3x+1\right).\left(10y+6\right)=\left(5y+2\right).\left(6x+3\right)\)
\(\Leftrightarrow30xy+18x+10y+6=30xy+15y+12x+6\)
\(\Leftrightarrow6x-5y=0\)
kHÔNG CÓ X,Y THÕA MÃN
cÂU B TƯƠNG TỰ
1.
Có: \(\frac{4x-5y}{7}=\frac{5z-3x}{9}=\frac{3y-4z}{11}\\ \Leftrightarrow\frac{7}{7}.\left(\frac{4x-5y}{7}\right)=\frac{9}{9}.\left(\frac{5z-3x}{9}\right)=\frac{11}{11}.\left(\frac{3y-4z}{11}\right)\\ \Leftrightarrow\frac{28x-35y}{49}=\frac{45z-27x}{81}=\frac{33y-44z}{121}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{28x-35y}{49}=\frac{45z-27x}{81}=\frac{33y-44z}{121}=\frac{28x-35y+45z-27x+33y-44z}{49+81+121}\)
tính ra nó đc x+ 2y +z ko đc tròn cho lắm..... mệt r tự nghĩ tiếp đi
\(\frac{x-1}{5}=\frac{y-2}{3}=\frac{z-2}{2}\)\(\text{và }3x-5y+6z=9\)
MÌNH ĐANG CẦN GẤP GIÚP MÌNH NHA
\(\frac{x-1}{5}=\frac{y-2}{3}=\frac{z-2}{2}\)\(\Leftrightarrow\frac{3\left(x-1\right)}{15}=\frac{5\left(y-2\right)}{15}=\frac{6\left(z-2\right)}{12}\)
\(\Leftrightarrow\frac{3x-3}{15}=\frac{5y-10}{15}=\frac{6z-12}{12}\).Áp dụng tc dãy tỉ số "=" nhau ta có:
\(\frac{3x-3}{15}=\frac{5y-10}{15}=\frac{6z-12}{12}=\frac{\left(3x-3\right)-\left(5y-10\right)+\left(6z-12\right)}{15-15+12}=\frac{9-5}{12}=\frac{1}{3}\)
\(\Rightarrow\hept{\begin{cases}\frac{3x-3}{15}=\frac{1}{3}\Rightarrow x=\frac{8}{3}\\\frac{5y-10}{15}=\frac{1}{3}\Rightarrow y=3\\\frac{6z-12}{12}=\frac{1}{3}\Rightarrow z=\frac{8}{3}\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405