\(\frac{3\sqrt{x}}{x-\sqrt{x}}\) tìm giá trị của x để P=1

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ: x > 0 và x \(\ne1\)

P = 1 hay \(\frac{3\sqrt{x}}{x-\sqrt{x}}=1\)

<=> \(x-\sqrt{x}=3\sqrt{x}\) <=> \(x-4\sqrt{x}=0\) <=> \(\sqrt{x}\left(\sqrt{x}-4\right)=0\)

<=> \(\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}=4\end{cases}}\) <=> \(\orbr{\begin{cases}x=0\left(KTM\right)\\x=16\left(TM\right)\end{cases}}\)

Vậy x = 16 thì ...

10 tháng 3 2020

\(P=\frac{3\sqrt{x}}{x-\sqrt{x}}\)

điều kiện xác định: \(x\ne1;0\)

PT <=> \(P=\frac{3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{3}{\sqrt{x}-1}\)

để P = 1 hay \(\frac{3}{\sqrt{x}-1}=1\)

<=>\(\frac{3}{\sqrt{x}-1}-1=0\)

<=> \(\frac{3-\sqrt{x}+1}{\sqrt{x}-1}=0\)

<=> \(\frac{4-\sqrt{x}}{\sqrt{x}-1}=0\)

<=> \(4-\sqrt{x}=0\)

<=> \(\sqrt{x}=4\)

<=> x = 16 (thỏa mãn điều kiện)

vậy ...

23 tháng 5 2021

a, Với \(x>0;x\ne1\)

 \(P=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)^2\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)\)

\(=\left(\frac{x-1}{2\sqrt{x}}\right)^2\left(\frac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\right)\)

\(=\frac{x^2-2x+1}{4x}.\frac{-4\sqrt{x}}{x-1}=\frac{1-x}{\sqrt{x}}\)

Thay x = 4 => \(\sqrt{x}=2\)vào P ta được : 

\(\frac{1-4}{2}=-\frac{3}{2}\)

c, Ta có : \(P< 0\Rightarrow\frac{1-x}{\sqrt{x}}< 0\Rightarrow1-x< 0\)vì \(\sqrt{x}>0\)

\(\Rightarrow-x< -1\Leftrightarrow x>1\)

19 tháng 8 2021
Bài 1. a) A=7/6
19 tháng 8 2021
b) √x+1 /(√x +2)(√x-1)
25 tháng 2 2022

Với x >= 0 ; x khác  9 

\(B=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}=\frac{-3\sqrt{x}-3}{x-9}=\frac{-3\left(\sqrt{x}+1\right)}{x-9}\)

\(\frac{B}{A}=\frac{-3\left(\sqrt{x}+1\right)}{x-9}:\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{-3}{\sqrt{x}+3}+\frac{1}{2}< 0\)

\(\Leftrightarrow\frac{-6+\sqrt{x}+3}{2\left(\sqrt{x}+3\right)}< 0\Rightarrow\sqrt{x}-3< 0\Leftrightarrow x< 9\)

Kết hợp đk vậy 0 =< x < 9 

15 tháng 8 2021

a, Với x > 0 

\(B=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1}{x+\sqrt{x}}=\frac{x-1+1}{x+\sqrt{x}}=\frac{x}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)

b, Ta có : \(A>\frac{2}{3}\Rightarrow\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{2}{3}>0\Leftrightarrow\frac{3\sqrt{x}-2\sqrt{x}-2}{3\left(\sqrt{x}+1\right)}>0\)

\(\Rightarrow\sqrt{x}-2>0\Leftrightarrow x>4\)

c, \(\frac{A}{B}=\frac{\sqrt{x}}{\sqrt{x}+1}.\frac{\sqrt{x}+3}{2\sqrt{x}}=\frac{\sqrt{x}+3}{2\sqrt{x}+2}=\frac{2\sqrt{x}+6}{2\sqrt{x}+2}=1+\frac{4}{2\sqrt{x}+2}=1+\frac{2}{\sqrt{x}+1}\)

\(\Rightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{1;2\right\}\)

\(\sqrt{x}+1\)12
\(\sqrt{x}\)0 (loại )1
xloại1
20 tháng 9 2019

khó quá đây là toán lớp mấy

19 tháng 9 2019

Bài 3:

Có:\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

True?