Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=4
Chính xác 100%.k cho mình nha bạn!!Chúc bạn học tốt!!!
\(\frac{20}{16}\)+\(\frac{3}{15}\)+\(\frac{2}{12}\)+\(\frac{3}{4}\)+\(\frac{4}{5}\)+\(\frac{5}{6}\)= (\(\frac{20}{16}\)+\(\frac{3}{4}\) )+( \(\frac{3}{15}\)+ \(\frac{4}{5}\) )+( \(\frac{2}{12}\)+ \(\frac{5}{6}\) )
= 2+1+1 = 4
Chúc bạn học tốt !!!

\(X-\frac{2}{3}=\frac{1}{2}+\frac{1}{6}+...+\frac{1}{9900}\)
\(=>X-\frac{2}{3}=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(=>X-\frac{2}{3}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=>X-\frac{2}{3}=1-\frac{1}{100}\)
\(=>X-\frac{2}{3}=\frac{100}{100}-\frac{1}{100}\)
\(=>X-\frac{2}{3}=\frac{99}{100}\)
\(=>X=\frac{99}{100}+\frac{2}{3}\)
\(=>X=\frac{497}{300}\)
Lưu ý: dấu chấm thay dấu nhân
\(x-\frac{2}{3}=\frac{1}{2}+\frac{1}{6}+...+\frac{1}{9900}\)
Tổng vế phải gồm : \(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{9900}\)
\(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{9900}=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{98}-\frac{1}{99}\right)+\left(\frac{1}{99}-\frac{1}{100}\right)\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{100}{100}-\frac{1}{100}\)
\(=\frac{99}{100}\)
Với vế trái, ta có : \(x-\frac{2}{3}=\frac{99}{100}\)
\(x-\frac{2}{3}=\frac{99}{100}\)
\(x=\frac{99}{100}+\frac{2}{3}\)
\(x=\frac{497}{300}\)

b
Q=\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{9900}\)
Rồi giải tương tự như câu a là được
M=\(5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)=5\left(1-\frac{1}{100}\right)=5.\frac{99}{100}=\frac{99}{20}\)

Gọi tổng dãy số hạng trên là A
A = 1 + \(\frac{1}{2}\)+ 1 + \(\frac{1}{6}\)+ 1 + \(\frac{1}{12}\)+ ... + 1 + \(\frac{1}{90}\)+ 1 + \(\frac{1}{110}\)
Mà từ \(\frac{1}{2}\)đén \(\frac{1}{110}\) có 10 số
A = 1 x 10 + \(\frac{1}{2}\)+( \(\frac{1}{2}\)- \(\frac{1}{3}\)) + ( \(\frac{1}{3}\)-\(\frac{1}{4}\)) + (\(\frac{1}{4}\)-\(\frac{1}{5}\)) + ... + \(\frac{1}{11}\)
A = 10 + \(\frac{1}{2}\)+ \(\frac{1}{2}\)+ \(\frac{1}{11}\)= \(\frac{112}{11}\)
\(=3.\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{9900}\right)\)
\(=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=3.\left(1-\frac{1}{100}\right)\)
\(=3.\frac{99}{100}=\frac{297}{100}\)
\(\frac{3}{2}+\frac{3}{6}+\frac{3}{12}+...+\frac{3}{9900}\\ =3\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(=3\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{100-99}{99.100}\right)\\ =3\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=3\left(1-\frac{1}{100}\right)=3.\frac{99}{100}=\frac{297}{100}\)