Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Các phân số tối giản:
\(\frac{1}{5}\text{ };\text{ }\frac{17}{20}\)
b) Rút gọn:
\(\frac{12}{18}=\frac{12\div6}{18\div6}=\frac{2}{3}\)
\(\frac{15}{95}=\frac{15\div5}{95\div5}=\frac{3}{19}\)
a) \(\frac{1}{5}\);\(\frac{17}{20}\)
b) \(\frac{12}{18}\)= \(\frac{2}{3}\);\(\frac{15}{95}\)= \(\frac{3}{19}\)
\(\frac{3}{6.8}+\frac{3}{8.10}+.......+\frac{3}{198.200}\)
\(=\frac{3}{2}.\left(\frac{2}{6.8}+\frac{2}{8.10}+........+\frac{2}{198.200}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+........+\frac{1}{198}-\frac{1}{200}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{6}-\frac{1}{200}\right)\)
\(=\frac{3}{2}.\frac{97}{600}=\frac{97}{400}\)
\(3.\left(\frac{2}{6.8}+\frac{2}{8.10}+....+\frac{2}{198.200}\right).\frac{1}{2}\)
=\(3.\left(\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+...+\frac{198}{200}\right).\frac{1}{2}\)
=\(3.\left(\frac{1}{6}-\frac{1}{200}\right).\frac{1}{2}\)
=.\(3.\frac{97}{600}.\frac{1}{2}\)=97/400
\(\frac{3}{2}+\frac{3}{8}+\frac{3}{32}+\frac{3}{128}+\frac{3}{512}\)
\(=3.\left(\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}\right)\)
\(=3.A\)với \(A=\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}\)
\(\Rightarrow2^2A=\left(2+\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}\right)\)
\(\Rightarrow2^2A-A=\left(2+\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}\right)-\left(\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}\right)\)
\(\Rightarrow4A-A=2-\frac{1}{2^9}\)
\(\Rightarrow3A=2-\frac{1}{512}=\frac{1023}{512}\Rightarrow A=\frac{1023}{512}:3\)
\(\Rightarrow\frac{3}{2}+\frac{3}{8}+\frac{3}{32}+\frac{3}{128}+\frac{3}{512}=3.\left(\frac{1023}{512}:3\right)=\frac{1023}{512}\)
Nhận xét : \(\frac{1}{6}=\frac{1}{2\cdot3}\);\(\frac{1}{12}=\frac{1}{3\cdot4}\);\(\frac{1}{20}=\frac{1}{4\cdot5};...\)
5 phân số còn lại : \(\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}+\frac{1}{11\cdot12}\)
Tổng là :
\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{11\cdot12}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{1}{2}-\frac{1}{12}\)
\(=\frac{5}{12}\)
ta có:
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...\)
Từ đây ta có thể suy luận ra 5 p/số sau
a) \(\frac{55}{32}\)
b) \(\frac{90}{48}\)
c) \(\frac{76}{15}\)
d) \(\frac{552}{119}\)
\(\frac{9}{16}+\frac{37}{32}=\frac{18}{32}+\frac{37}{32}=\frac{55}{32}\)
\(\frac{126}{48}-\frac{12}{16}=\frac{21}{8}-\frac{6}{8}=\frac{15}{8}\)
\(\frac{19}{15}\times\frac{32}{8}=\frac{19}{15}\times4=\frac{76}{15}\)
\(\frac{23}{17}:\frac{7}{24}=\frac{23}{17}.\frac{24}{7}=4\frac{76}{119}\)
Số đó là :
\(1\)/ \(\left(\frac{1}{2}\cdot\frac{1}{3}\cdot\frac{1}{2}\cdot\frac{1}{3}\cdot\frac{1}{2}\right)=72\)
Đáp số : \(72\)
Exactly 100 % đó bạn
kb mình nhé
\(\frac{3200}{254565}+\frac{?}{?}=1\)
\(\Rightarrow\frac{?}{?}=\frac{254565}{3200}\)
Ta đổi \(1=\frac{254565}{254565}\)
Ta có : \(\frac{254565}{254565}-\frac{3200}{254565}=\frac{\text{251365}}{254565}\)
Rồi tự rút gọn