![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Giải:
1) \(7^8.\left(-\dfrac{1}{7}\right)^8\)
\(=7^8.\left(\dfrac{1}{7}\right)^8\)
\(=7^8.\dfrac{1^8}{7^8}\)
\(=1\)
2) \(\left(\dfrac{4}{3}\right)^{10}.\left(-\dfrac{3}{4}\right)^{10}\)
\(=\left(\dfrac{4}{3}\right)^{10}.\left(\dfrac{3}{4}\right)^{10}\)
\(=\dfrac{4^{10}}{3^{10}}.\dfrac{3^{10}}{4^{10}}\)
\(=1\)
3) \(\left(-\dfrac{7}{2}\right)^{2006}.\left(-\dfrac{2}{7}\right)^{2006}\)
\(=\left(\dfrac{7}{2}\right)^{2006}.\left(\dfrac{2}{7}\right)^{2006}\)
\(=1\)
4) \(\left(-\dfrac{5}{13}\right)^{2007}.\left(\dfrac{13}{5}\right)^{2006}\)
\(=\left(\dfrac{5}{13}\right)^{2007}.\left(\dfrac{13}{5}\right)^{2006}\)
\(=\dfrac{5^{2007}.13^{2006}}{13^{2007}.5^{2006}}\)
\(=\dfrac{5}{13}\)
Vậy ...
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,\left[\left(-\frac{1}{2}\right)^3-\left(\frac{3}{4}\right)^3.\left(-2\right)^2\right]:\left[2.\left(-1\right)^5+\left(\frac{3}{4}\right)^2-\frac{3}{8}\right]\)
\(=\left[\left(-\frac{1}{8}\right)-\frac{27}{64}.4\right]:\left[2.\left(-1\right)+\frac{9}{16}-\frac{3}{8}\right]\)
\(=\left[\left(-\frac{1}{8}-\frac{27}{16}\right)\right]:\left[-2+\frac{9}{16}-\frac{3}{8}\right]\)
\(=\frac{-2-27}{16}:\frac{-32+9-6}{16}\)
\(=-\frac{29}{16}:\frac{-29}{16}=1\)
\(b,\left[\left(\frac{4}{3}\right)^{-2}\left(\frac{3}{2}\right)^4\right]:\left(\frac{3}{2}\right)^6\)
\(=\left(\frac{9}{16}.\frac{81}{16}\right):\frac{729}{64}\)
\(=\frac{729}{64}:\frac{729}{64}=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) ĐKXĐ : \(x\ne0\)
\(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\left(1+\frac{2}{5}+\frac{2}{3}\right)=\frac{-5}{4}\)
\(\left(\frac{-9x}{3x}+\frac{9}{3x}-\frac{x}{3x}\right):\left(\frac{15}{15}+\frac{6}{15}+\frac{10}{15}\right)=\frac{-5}{4}\)
\(\frac{-9x+9-x}{3x}:\frac{15+6+10}{15}=\frac{-5}{4}\)
\(\frac{-10x+9}{3x}:\frac{31}{15}=\frac{-5}{4}\)
\(\frac{-10x+9}{3x}=\frac{-31}{12}\)
\(\Leftrightarrow12\left(-10x+9\right)=-31\cdot3x\)
\(\Leftrightarrow-120x+108=-93x\)
\(\Leftrightarrow-120x+93x=-108\)
\(\Leftrightarrow-27x=-108\)
\(\Leftrightarrow x=4\)
b) ĐKXĐ : \(x\ne0\)
\(\frac{-3x}{4}\cdot\left(\frac{1}{x}+\frac{2}{7}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\frac{-3x}{4}=0\\\frac{1}{x}+\frac{2}{7}=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\left(loai\right)\\\frac{-2}{-2x}=\frac{-2}{7}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\left(loai\right)\\x=\frac{-7}{2}\end{cases}}\)
Vậy.....
c) phân tích ra rồi làm thôi e :)) a bận rồi
![](https://rs.olm.vn/images/avt/0.png?1311)
Dài đấy :))
a) \(\left|x-1\right|-\left(-2\right)^3=9\cdot\left(-1\right)^{100}\)
\(\Leftrightarrow\left|x-1\right|-\left(-8\right)=9\cdot1\)
\(\Leftrightarrow\left|x-1\right|+8=9\)
\(\Leftrightarrow\left|x-1\right|=1\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)
b) \(\frac{x-2}{-4}=\frac{-9}{x-2}\)( ĐKXĐ : \(x\ne2\))
\(\Leftrightarrow\left(x-2\right)\left(x-2\right)=-4\cdot\left(-9\right)\)
\(\Leftrightarrow\left(x-2\right)^2=36\)
\(\Leftrightarrow\left(x-2\right)^2=\left(\pm6\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=6\\x-2=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-4\end{cases}}\left(tmđk\right)\)
c) \(\frac{x-5}{3}=\frac{-12}{5-x}\)( ĐKXĐ : \(x\ne5\))
\(\Leftrightarrow\frac{x-5}{3}=\frac{-12}{-\left(x-5\right)}\)
\(\Leftrightarrow\frac{x-5}{3}=\frac{12}{x-5}\)
\(\Leftrightarrow\left(x-5\right)\left(x-5\right)=3\cdot12\)
\(\Leftrightarrow\left(x-5\right)^2=36\)
\(\Leftrightarrow\left(x-5\right)^2=\left(\pm6\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=6\\x-5=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=11\\x=-1\end{cases}}\left(tmđk\right)\)
d) \(8x-\left|4x+\frac{3}{4}\right|=x+2\)
\(\Leftrightarrow8x-x-2=\left|4x+\frac{3}{4}\right|\)
\(\Leftrightarrow7x-2=\left|4x+\frac{3}{4}\right|\)(*)
\(\left|4x+\frac{3}{4}\right|\ge0\Leftrightarrow4x+\frac{3}{4}\ge0\Leftrightarrow x\ge-\frac{3}{16}\)
Vậy ta xét hai trường hợp sau :
1. \(x\ge-\frac{3}{16}\)
(*) <=>\(7x-2=4x+\frac{3}{4}\)
\(\Leftrightarrow7x-4x=\frac{3}{4}+2\)
\(\Leftrightarrow3x=\frac{11}{4}\)
\(\Leftrightarrow x=\frac{11}{12}\)(tmđk)
2. \(x< -\frac{3}{16}\)
(*) <=> \(7x-2=-\left(4x+\frac{3}{4}\right)\)
\(\Leftrightarrow7x-2=-4x-\frac{3}{4}\)
\(\Leftrightarrow7x+4x=-\frac{3}{4}+2\)
\(\Leftrightarrow11x=\frac{5}{4}\)
\(\Leftrightarrow x=\frac{5}{44}\left(ktmđk\right)\)
Vậy x = 11/12
e) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2020}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2020}\)
\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2019}{2020}\)
\(\Leftrightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2019}{4040}\)
\(\Leftrightarrow\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}=\frac{2019}{4040}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2019}{4040}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2019}{4040}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{4040}\)
\(\Leftrightarrow x+1=4040\)
\(\Leftrightarrow x=4039\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,=\left(\frac{15}{12}-\frac{3}{12}\right)+\left(\frac{5}{13}-\frac{18}{13}\right)\)
\(=1+-1\)
\(=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{11}{12}-\left(\frac{2}{5}+x\right)=\frac{2}{3}.\left(6x+1\right)\)
\(\Rightarrow\frac{11}{12}-\frac{2}{5}-x=\frac{2}{3}.6x+\frac{2}{3}\)
\(\Rightarrow\frac{55-24}{60}-x=4x+\frac{2}{3}\)
\(\Rightarrow\frac{31}{60}-x=4x+\frac{2}{3}\)
\(\Rightarrow\frac{31}{60}-\frac{2}{3}=4x+x=5x\)
\(\Rightarrow5x=-\frac{11}{60}\)
\(\Rightarrow x=\frac{-11}{300}\)
= 3/2 - 4 / 5 + 4 / 25 = 43 / 50
\(\frac{3}{2}-\frac{2^2}{5}+\left(\frac{2}{5}\right)^2\)
\(=\frac{75}{50}-\frac{40}{50}+\frac{8}{50}\)
\(=\frac{75-45+8}{50}\)
\(=\frac{43}{50}\)