Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{3}{1.4}+\frac{6}{4.10}+\frac{9}{10.19}+\frac{12}{19.31}+\frac{15}{31.46}+\frac{18}{46.64}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{10}+\frac{1}{10}-\frac{1}{19}+\frac{1}{19}-\frac{1}{31}+\frac{1}{31}-\frac{1}{46}+\frac{1}{46}-\frac{1}{64}\)
\(=1-\frac{1}{64}=\frac{63}{64}\)
Bạn ko hiểu chỗ nào là phải hỏi mình ngay nhé!

\(\frac{3}{1.4}+\frac{6}{4.10}+\frac{9}{10.19}+\frac{12}{19.31}+\frac{15}{31.46}+\frac{18}{46.64}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{10}+\frac{1}{10}-\frac{1}{19}+\frac{1}{19}-\frac{1}{31}+\frac{1}{31}-\frac{1}{46}+\frac{1}{46}-\frac{1}{64}\)
\(=1-\frac{1}{64}\)
\(=\frac{63}{64}\)

Bài 1 :
\(A=\frac{1}{3}-\frac{3}{4}-\frac{\left(-3\right)}{5}+\frac{1}{72}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)
\(\Rightarrow A=\frac{3}{9}-\frac{3}{4}+\frac{9}{15}+\frac{1}{72}-\frac{2}{9}-\frac{2}{72}+\frac{1}{15}\)
\(\Rightarrow A=\left(\frac{3}{9}-\frac{2}{9}\right)+\left(\frac{9}{15}+\frac{1}{15}\right)+\left(\frac{1}{72}+\frac{-2}{72}\right)-\frac{3}{4}\)
\(\Rightarrow A=\frac{1}{9}+\frac{2}{3}+\frac{-1}{72}-\frac{3}{4}=\frac{8}{72}+\frac{48}{72}+\frac{-1}{72}-\frac{54}{72}\)
\(\Rightarrow A=\frac{1}{72}\)
Vậy : \(A=\frac{1}{72}\)
Bài 2:
Bạn tham khảo tại đây nhé: Câu hỏi của Linh Nguyễn
Chúc bạn học tốt!

Bài 1:
\(A=\dfrac{3}{1.4}+\dfrac{5}{4.9}+\dfrac{7}{9.16}+\dfrac{9}{16.25}+\dfrac{11}{25.36}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{25}+\dfrac{1}{25}-\dfrac{1}{36}\)
\(=1-\dfrac{1}{36}=\dfrac{35}{36}\)
\(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{100.103}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{103}\)
\(=1-\dfrac{1}{103}=\dfrac{102}{103}\)
\(C=\dfrac{3}{1.4}+\dfrac{6}{4.10}+\dfrac{9}{10.19}+\dfrac{12}{19.31}+\dfrac{15}{31.46}+\dfrac{18}{46.64}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{31}+\dfrac{1}{31}-\dfrac{1}{46}+\dfrac{1}{46}-\dfrac{1}{64}\)
\(=1-\dfrac{1}{64}=\dfrac{63}{64}\)
Bài 2:
\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{49.50}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{25}\right)\)
\(=\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+...+\dfrac{1}{50}\left(đpcm\right)\)

Bài 1:
A = \(\frac15\) + \(\frac{3}{17}\) - \(\frac43\) + (\(\frac45\) - \(\frac{3}{17}\) + \(\frac13\)) - \(\frac17\) + (- \(\frac{14}{30}\))
A = \(\frac15\) + \(\frac{3}{17}\) - \(\frac43\) + \(\frac45\) - \(\frac{3}{17}\) + \(\frac13\) - \(\frac17\) - \(\frac{14}{30}\)
A = (\(\frac15\) + \(\frac45\)) + (\(\frac{3}{17}\) - \(\frac{3}{17}\)) - (\(\frac43-\frac13\)) - \(\frac{30}{210}\) - \(\frac{98}{210}\)
A = 1 + 0 - 1 - (\(\frac{30}{210}+\frac{98}{210}\))
A = 1 - 1 - \(\frac{228}{210}\)
A = 0 - \(\frac{128}{210}\)
A = - \(\frac{64}{105}\)
Bài 2:
B= (\(\frac58\) - \(\frac{4}{12}\) + \(\frac32\)) - (\(\frac58\) + \(\frac{9}{13}\)) - (\(\frac{-3}{2}\)) + \(\frac{7}{-15}\)
B = \(\frac58\) - \(\frac{4}{12}\) + \(\frac32\) - \(\frac58\) - \(\frac{9}{13}\) + \(\frac32\) - \(\frac{7}{15}\)
B = (\(\frac58\) - \(\frac58\)) + (\(\frac32\) + \(\frac32\)) - (\(\frac13\) + \(\frac{9}{13}\) + \(\frac{7}{15}\))
B = 0 + 3 - (\(\frac{65}{195}\) + \(\frac{135}{195}\) + \(\frac{91}{195}\))
B = 3 - (\(\frac{200}{195}\) + \(\frac{91}{195}\))
B = 3 - \(\frac{97}{65}\)
B = \(\frac{195}{65}\) - \(\frac{97}{65}\)
B = \(\frac{98}{65}\)

Bài 1:
a) Ta có: \(\frac{3}{8}+\frac{-5}{6}\)
\(=\frac{3}{8}-\frac{5}{6}\)
\(=\frac{9}{24}-\frac{20}{24}\)
\(=-\frac{11}{24}\)
b) Ta có: \(\frac{15}{12}-\frac{-1}{4}\)
\(=\frac{15}{12}+\frac{1}{4}\)
\(=\frac{15}{12}+\frac{3}{12}\)
\(=\frac{18}{12}=\frac{3}{2}\)
Bài 2:
a) Ta có: \(-\frac{1}{12}-\left(2\frac{5}{8}-\frac{1}{3}\right)\)
\(=-\frac{1}{12}-\frac{21}{8}+\frac{1}{3}\)
\(=\frac{-2}{24}-\frac{63}{24}+\frac{8}{24}\)
\(=\frac{-57}{24}\)
\(=-\frac{19}{8}\)
b) Ta có: \(\frac{-5}{6}-\left(\frac{-3}{8}+\frac{1}{10}\right)\)
\(=\frac{-5}{6}+\frac{3}{8}-\frac{1}{10}\)
\(=\frac{-100}{120}+\frac{45}{120}-\frac{12}{120}\)
\(=\frac{-67}{120}\)
c) Ta có: \(-1.75-\left(\frac{-1}{9}-2\frac{1}{18}\right)\)
\(=-\frac{7}{4}+\frac{1}{9}+\frac{37}{18}\)
\(=\frac{-63}{36}+\frac{4}{36}+\frac{74}{36}\)
\(=\frac{15}{36}=\frac{5}{12}\)

\(a,\frac{-8}{15}.\left(-30\right).\frac{15}{-8}.\frac{9}{10}\)
\(=-\left(\frac{8}{15}.\frac{15}{8}\right).\left(30.\frac{9}{10}\right)\)
\(=-1.27
=-27\)
\(b,2\frac{1}{18}.\frac{23}{24}.\frac{9}{37}.\frac{48}{-15}\)
\(=\frac{-37.23.9.48}{18.24.37.15}=\frac{23}{15}\)
c, chịu rồi
\(\frac{3}{1.4}+\frac{6}{4.10}+\frac{9}{10.19}+\frac{12}{19.31}+\frac{15}{31.46}+\frac{18}{46.64}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{10}+\frac{1}{10}-\frac{1}{19}+\frac{1}{19}-\frac{1}{31}+\frac{1}{31}-\frac{1}{46}+\frac{1}{46}-\frac{1}{64}\)
\(=1-\frac{1}{64}\)
\(=\frac{63}{64}\)
_Chúc bạn học tốt_
=1/1-1/4+1/4-1/10+....+1/46-1/64
=1-1/64
=63/64