
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Chỗ cuối mk nhầm, sửa lại nha :
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{90}+\frac{1}{100}\)
\(=\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+...+\frac{1}{9\times10}+\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{10}+\frac{1}{100}\)
\(=\frac{50}{100}-\frac{10}{100}+\frac{1}{100}\)
\(=\frac{41}{100}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{90}+\frac{1}{100}\)
\(=\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+...+\frac{1}{9\times10}+\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{10}+\frac{1}{100}\)
\(=\frac{50}{100}-\frac{10}{100}-\frac{1}{100}\)
\(=\frac{39}{100}\)
Đúng thì k nha bn !!!!

\(S=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{90}+\frac{1}{100}\)
\(S=\left(\frac{1}{6}+\frac{1}{12}\right)+\left(\frac{1}{20}+\frac{1}{100}\right)+\left(\frac{1}{30}+\frac{1}{90}\right)\)
\(S=\left(\frac{2}{12}+\frac{1}{12}\right)+\left(\frac{5}{100}+\frac{1}{100}\right)+\left(\frac{3}{90}+\frac{1}{90}\right)\)
\(S=\frac{3}{12}+\frac{6}{100}+\frac{4}{90}\)
\(S=\frac{1}{4}+\frac{3}{50}+\frac{2}{45}\)
\(S=\frac{319}{900}\)
S=\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.15}+..\)
\(S=SAI\)
HÌNH NHƯ SAI RỒI
HÌNH NHỨIA

1/6 + 1/12 + 1/20 + 1/30 + 1/42 + ... + 1/90 + 1/110 = 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + ... + 1/9.10 + 1/10.11 = 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + ... + 1/9 - 1/10 + 1/10 - 1/11 = 1/2 - 1/11 = 9/22
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}+\frac{1}{110}\)
=\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}+\frac{1}{10.11}\)
=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
=\(\frac{1}{2}-\frac{1}{11}\)
=\(\frac{9}{22}\)

\(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{9\cdot10}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{1}-\frac{1}{10}=1-\frac{1}{10}=\frac{9}{10}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6}-\frac{1}{7}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{1}-\frac{1}{10}=\frac{9}{10}\)

\(=1-\frac{1}{1\cdot2}+1-\frac{1}{2\cdot3}+1-\frac{1}{3\cdot4}+...+1-\frac{1}{9\cdot10}\)
\(=\left[1+1+1+...+1\right]-\left[\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{9\cdot10}\right]\)
\(=9-\left[\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right]=9-\left[1-\frac{1}{10}\right]\)
\(=9-\frac{9}{10}=\frac{81}{10}\)
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)
\(=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=9-\left(1-\frac{1}{10}\right)\)
\(=9-\frac{9}{10}=\frac{81}{10}\)

a) 5/30+15/90+25/150+35/210+45/270
=1/6+1/6+1/6+1/6+1/6
=1/6 x 5
=5/6
b) 1/2+1/6+1/12+1/20+....+1/56
=1/1x2+1/2x3+1/3x4+1/4x5+.....1/7x8
=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+.......-1/7+1/7-1/8
=1/1-1/8
=7/8
c) mình chịu

Đặt biểu thức đó là A A = 1/6 + 1/12 + 1/20 + 1/30 + ... + 1/90 A = 1/2x3 + 1/3x4 + 1/4x5 + 1/5x6 + ... + 1/9x10 A = 1/2 - 1/3 + 1/3 - 1/4 + 14 - 1/5 + 1/5 - 1/6 + ..+ 1/9 - 1/10 A = 1/2 - 1/10 A = 2/5
1/6 + 1/12 + 1/20 + 1/30 + ... + 1/90
= 1/2×3 + 1/3×4 +1/4×5 + 1/5×6 + ... × 1/9×10
= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + ... + 1/9 - 1/10
= 1/2 - 1/10
= 2/5
Bài làm
\(\frac{30}{20}+\frac{90}{20}=\frac{30+90}{20}=\frac{120}{20}=6\)
Ta có :
\(\frac{30}{20}=\frac{30:10}{20:10}=\frac{3}{2}\)
\(\frac{90}{20}=\frac{90:10}{20:10}=\frac{9}{2}\)
\(\frac{3}{2}+\frac{9}{2}=\frac{3+9}{2}=\frac{12}{2}=6\)