![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ : \(x\ge1\)
PT đã cho tương đương với :
\(\sqrt{3x-2}+\sqrt{x-1}=\left[3x-2+2\sqrt{3x^2-5x+2}+x-1\right]-6\)
\(\Leftrightarrow\sqrt{3x-2}+\sqrt{x-1}=\left(\sqrt{3x-2}+\sqrt{x-1}\right)^2-6\)
Đặt \(\sqrt{3x-2}+\sqrt{x-1}=t\left(t\ge1\right)\)
Khi đó : \(t^2-t-6=0\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\left(loai\right)\end{cases}}\)
\(\Rightarrow\sqrt{3x-2}+\sqrt{x-1}=3\)
từ đó dễ dàng tìm được x
Làm tiếp bài của @Thanh Tùng DZ
Thay t=3 vào cách đặt ta được \(\sqrt{3x-2}+\sqrt{x-1}=3\left(3a\right)\)
Ta có \(\left(3a\right)\Leftrightarrow4x-3+2\sqrt{3x^2-5x+2}=9\)
\(\Leftrightarrow\sqrt{3x^2-5x+2}=6-2x\)
\(\Leftrightarrow\hept{\begin{cases}6-2x\ge0\\3x^2-5x+2=36-24x+4x^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le3\\x=2;x=17\end{cases}\Leftrightarrow x=2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(x^2-5+\sqrt{x+5}=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+5\right)+\sqrt{x+5}=0\)(tự làm tiếp)
b) Đề hơi sai sai
c) Mik chưa nghĩ ra
d) \(\left(\sqrt{1-2x}-1\right)+\left(\sqrt{1+2x}-1\right)+x^2=0\)
\(\frac{-2x}{\sqrt{1-2x}+1}+\frac{2x}{\sqrt{1+2x}+1}+x^2=0\)(tự lm tiếp)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a,x4-10x2+9=0
=>(x-1)(x3+x2-9x-9)=0
=> (x-1)(x+1)(x-3)(x+3)=0
=>\(\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\)hoặc\(\orbr{\begin{cases}x-3=0\\x+3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=\pm1\\x=\pm3\end{cases}}\)
Vậy tập nghiệm cuả pt là S={\(\pm1,\pm3\)}
![](https://rs.olm.vn/images/avt/0.png?1311)
a) ĐK: \(x\ge5\)
\(\sqrt{4x-20}+\frac{1}{3}\sqrt{9x-45}-\frac{1}{5}\sqrt{16x-80}=0\)
\(\Leftrightarrow\)\(\sqrt{4\left(x-5\right)}+\frac{1}{3}\sqrt{9\left(x-5\right)}-\frac{1}{5}\sqrt{16\left(x-5\right)}=0\)
\(\Leftrightarrow\)\(2\sqrt{x-5}+\sqrt{x-5}-\frac{4}{5}\sqrt{x-5}=0\)
\(\Leftrightarrow\)\(\frac{11}{5}\sqrt{x-5}=0\)
\(\Leftrightarrow\)\(x-5=0\)
\(\Leftrightarrow\)\(x=5\) (t/m)
Vậy
b) \(-5x+7\sqrt{x}=-12\)
\(\Leftrightarrow\)\(5x-7\sqrt{x}-12=0\)
\(\Leftrightarrow\)\(\left(\sqrt{x}+1\right)\left(5\sqrt{x}-12\right)=0\)
đến đây tự làm
c) d) e) bạn bình phương lên
f) \(VT=\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(x^4-2x^2+1\right)+25}\)
\(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2}\)
\(\ge\sqrt{9}+\sqrt{25}=8\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\x^2-1=0\end{cases}}\)\(\Leftrightarrow\)\(x=-1\)
Vậy...
Bằng 1 thôi nhé
ĐKXĐ tự tìm nha
Nhận thấy x=0 không là nghiệm của phương trình
Xét x khác 0, phương trình \(\Leftrightarrow\frac{2}{3x+\frac{2}{x}-1}-\frac{7}{3x+\frac{2}{x}+5}=1.\)
Đặt \(a=3x+\frac{2}{x}+2\)
Khi đó: \(\frac{2}{a-3}-\frac{7}{a+3}=1\)
\(\Rightarrow2a+6-7a+21=a^2-9\)
\(\Leftrightarrow a^2+9a-4a-36=0\)
\(\Leftrightarrow a\left(a+9\right)-4\left(a+9\right)=0\)
\(\Leftrightarrow\left(a+9\right)\left(a-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-9\\a=4\end{cases}}\)
Từ đó theo cách đặt bn thay vào rồi giải phương trình nhận đc là ra
học tốt